Study plan

Name of study plan: Open Informatics - Artificial Intelligence

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Required credits: 85 Elective courses credits: 35 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 49 The role of the block: P

Code of the group: 2018_MOIDIP Name of the group: Diploma Thesis Requirement credits in the group: In this group you have to gain 25 credits Requirement courses in the group: In this group you have to complete 1 course Credits in the group: 25 Note on the group:

CodeName of the course / Name of the group of courses
(in case of groups of courses the list of codes of their
members)
Tutors, authors and guarantors (gar.)CompletionCreditsScopeSemesterRoleBDIP25Diploma ThesisZZ522sLP

Characteristics of the courses of this group of Study Plan: Code=2018_MOIDIP Name=Diploma Thesis

BDIP25	Diploma Thesis	Z	25
Independent final comp	rehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his of	or her branch of s	tudy, which will
be specified by branch of	department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehen	sive final examination	ation.

Code of the group: 2018_MOIP

Name of the group: Compulsory subjects of the programm Requirement credits in the group: In this group you have to gain 24 credits Requirement courses in the group: In this group you have to complete 4 courses Credits in the group: 24 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Ρ
B4M33PAL	Advanced algorithms Marko Genyk-Berezovskyj, Daniel Pr ša, Ond ej Drbohlav Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	z	Ρ
B4MSVP	Software or Research Project Ivan Jelínek, Jaroslav Sloup, Ji í Šebek, Martin Šipoš, Drahomíra Hejtmanová, Jana Zichová, Petr Pošík, Martin Hlinovský, Katarína Žmolíková, Ivan Jelínek Ivan Jelínek (Gar.)	ΚZ	6		Z,L	Ρ
B4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIP Name=Compulsory subjects of the programm

	ombinatorial Optimization			1	Z,ZK	6
	plems and algorithms of combinatorial optimization (often called discrete optimization; th	-		-		
	ra, graph theory, and basics of optimization, we show optimization techniques based or search methods. We focus on application of optimization in stores, ground transportation					
• ·	es, message routing, scheduling in parallel computers.	on, night transpor	iation, iogist	ics, plannin	y or numari rea	sources,
	dvanced algorithms			7	Z,ZK	6
	graph representation. Combinatorial algorithms. Application of formal languages theory	y in computer scie	ence - patter			Ū
B4MSVP Sc	oftware or Research Project				KZ	6
B4M01TAL Th	neory of Algorithms			Z	Z,ZK	6
The course brings theoretic	al background of the theory of algorithms with the focus at first on the time and space of	complexity of algo	rithms and p	problems, se	econdly on the	correctness
•	ealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSP	ACE are treated a	and properti	es of them i	nvestigated. P	robabilistic
algorithms are studied and	the classes RP and ZZP introduced.					
Nome of the black	ly Compulsory courses of the encodelization					
	k: Compulsory courses of the specialization					
Minimal number	of credits of the block: 36					
The role of the bl	lock: PO					
Code of the arou	p: 2018_MOIPO7					
•	up: Compulsory subjects of the branch					
•		Pro				
•	dits in the group: In this group you have to gain 36					
Requirement cou	urses in the group: In this group you have to comple	ete 6 cours	ses			
Credits in the gro	pup: 36					
Note on the grou	D.					
	Name of the course / Name of the group of courses					
Code	(in case of groups of courses the list of codes of their	Completion	Cradite	Scono	Semester	Role
Code	members)	completion	Credits	Scope	Semester	NOIE
	Tutors, authors and guarantors (gar.)					
B4M36LUP	Logical Reasoning and Programming Ond ej Kuželka, Karel Chvalovský Filip Železný Filip Železný (Gar.)	Z,ZK	6	2P+2C	Z	PO
B4M36PUI	Artificial Intelligence Planning Rostislav Hor ík Rostislav Hor ík Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	L	PO
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PO
B4M36SMU	Symbolic Machine Learning	Z,ZK	6	2P+2C	L	PO
	Ond ej Kuželka, Filip Železný, Gustav Šír Ond ej Kuželka Ond ej Kuželka (Gar.)	<i>2,21</i>				
B4M36UIR	Artificial Intelligence in Robotics Miloš Prágr, Jan Faigl Jan Faigl Jan Faigl (Gar.)	Z,ZK	6	2P+2C	Z	PO
B4M36MAS	Computational Game Theory Tomáš Kroupa, Michal Jakob, Ond ej Kubí ek, Tomáš Votroubek Tomáš Kroupa Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	Z	PO

Characteristics of the courses of this group of Study Plan: Code=2018_MOIPO7 Name=Compulsory subjects of the branch

B4M36LUP	Logical Reasoning and Programming	Z,ZK	6		
The course's aim is to e	xplain selected significant methods of computational logic. These include algorithms for propositional satisfiability checking, lo	ogical programmir	ng in Prolog, and		
first-order theorem prov	ing and model-finding. Time permitting, we will also discuss some complexity and decidability issues pertaining to the said m	ethods.			
B4M36PUI	Artificial Intelligence Planning	Z,ZK	6		
The course covers the p	problematic of automated planning in artificial intelligence and focuses especially on domain independent models of planning	problems: planni	ng as a search		
in the space of states (state-space planning), in the space of plans (plan-space planning), heuristic planning, planning in graph representation of planning problems (graph-plan) or					
hierarchical planning. The students will also learn about the problematic of planning under uncertainty and the planning model as a decision-making in MDP and POMDP.					
BE4M33SSU	Statistical Machine Learning	Z,ZK	6		
The aim of statistical ma	achine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some	prior knowledge a	bout the task.		
This includes typical tas	ks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning co	ncepts such as ris	sk minimisation,		
maximum likelihood est	mation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classific	cation and regress	sion and to show		
how they can be learne	d by those concepts.				
B4M36SMU	Symbolic Machine Learning	Z,ZK	6		
This course consists of	four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its	environment, als	o known as		
reinforcement learning.	This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for infere	nce. The third par	t will cover		
fundamental topics from	n natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Final	ly, the last part wi	ll provide an		
introduction to several to	opics from the computational learning theory, including the online and batch learning settings.				
B4M36UIR	Artificial Intelligence in Robotics	Z,ZK	6		
The course aims to acq	uaint students with the use of planning approaches and decision-making techniques of artificial intelligence for solving proble	ems arising in auto	onomous robotic		
systems. Students in the	e course are employing knowledge of planning algorithms, game theory, and solving optimization problems in selected application	ation scenarios of	mobile robotics.		
Students first learn arch	itectures of autonomous systems based on reactive and behavioral models of autonomous systems. The considered application	on scenarios and	robotic problems		
include path planning, p	ersistent environmental monitoring, robotic exploration of unknown environments, online real-time decision-making, deconfli	ction in autonomo	us systems, and		
solutions of antagonistic	conflicts. In laboratory exercises, students practice their problem formulations of robotic challenges and practical solutions in	n a realistic roboti	c simulator or		
consumer mobile robots	s. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide	e students with a	deeper and		
broader insight into the	field of artificial intelligence. More information is available at https://prg.ai/minor.				

B4M36MAS	Computational Game Theory	Z,ZK	6
This course is designed	to introduce students to the fundamental concepts and applications of game theory, a powerful tool used to model strategic	interactions amor	ng individuals,
organizations, or countr	ies. Throughout the course, we will delve into various aspects of game theory and explore its wide-ranging applications in div	erse fields, includ	ling machine
learning and AI.			

Name of the block: Elective courses Minimal number of credits of the block: 0 The role of the block: V

Code of the group: 2018_MOIH Name of the group: Humanities subjects Requirement credits in the group: Requirement courses in the group: Credits in the group: 0 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0M16FIL	Peter Zamarovský Peter Zamarovský Peter Zamarovský (Gar.)	Z,ZK	5	2P+2S	Z,L	V
B0M16HVT	History of science and technology 2 Marcela Efmertová, Jan Mikeš Marcela Efmertová Marcela Efmertová (Gar.)	Z,ZK	5	2P+2S	Z,L	V
B0M16HSD1	History of economy and social studies Marcela Efmertová	Z,ZK	5	2P+2S	Z,L	V
B0M16PSM	Psychology Jan Fiala Jan Fiala Jan Fiala (Gar.)	Z,ZK	5	2P+2S	Z,L	V
B0M16TEO	Theology Vladimír Sláme ka Vladimír Sláme ka Vladimír Sláme ka (Gar.)	Z,ZK	5	2P+2S	Z,L	V

Characteristics of the courses of this group of Study Plan: Code=2018_MOIH Name=Humanities subjects

B0M16FIL		Z,ZK	5				
B0M16HVT	History of science and technology 2	Z,ZK	5				
This subject traces historical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate students' interest in the history and							
	traditions of the subject, while highlighting the developments in technical education and professional organizations, the process of shaping scientific life and the influence of technical						
engineers							
B0M16HSD1	History of economy and social studies	Z,ZK	5				
•	This subject deals with the history of the Czech society in the 19th - 21th centuries. It follows the forming of the Czech political representation, its aims and achieved results as well as						
the social and cultural development and coexistence of the various ethnical groups in the Czech countries.							
the social and cultura	al development and coexistence of the various ethnical groups in the Czech countries.						
the social and cultura B0M16PSM	al development and coexistence of the various ethnical groups in the Czech countries. Psychology	Z,ZK	5				
		Z,ZK Z,ZK	5 5				
B0M16PSM B0M16TEO This subject provides	Psychology Theology to students the basic orientation in christian theology and requires no special previous education. After short philosophic lectures	Z,ZK re the basic theolo	5 5 ogic disciplines				
B0M16PSM B0M16TEO This subject provides are gone through. Th	Psychology Theology	Z,ZK re the basic theolo	5 5 ogic disciplines				

Code of the group: MTV Name of the group: Physical education Requirement credits in the group: Requirement courses in the group: Credits in the group: 0 Note on the group:

Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their Code Completion Credits Scope Semester Role members) Tutors, authors and guarantors (gar.) Ζ TVV 0 0+2 Z,L V **Physical education Physical Education** A003TV Ζ 2 0+2 L,Z V Ji í Drnek TV-V1 Ζ 0+2 Z,L 1 **Physical education** v TVV0 Z,L Ζ 0 0+2 **Physical education** V TVKLV Ζ 0 7dní L v **Physical Education Course** TVKZV Ζ Ζ 0 7dní **Physical Education Course** V

Characteristics of the courses of this group of Study Plan: Code=MTV Name=Physical education

TVV	Physical education	Z	0
A003TV	Physical Education	Z	2

TV-V1	Physical education	Z	1
TVV0	Physical education	Z	0
TVKLV	Physical Education Course	Z	0
TVKZV	Physical Education Course	Z	0

Code of the group: 2018_MOIVOL Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group: Credits in the group: 0 Note on the group: ~The

~The offer of elective courses arranged by departments can be found on the website https://fel.cvut.cz/en/education/volitelne-predmety.html

List of courses of this pass:

Code	Name of the course	Completion	Credits
A003TV	Physical Education	Z	2
B0M16FIL		Z,ZK	5
B0M16HSD1	History of economy and social studies	Z,ZK	5
This subject deals	with the history of the Czech society in the 19th - 21th centuries. It follows the forming of the Czech political representation, its aims a	and achieved resul	ts as well as
	the social and cultural development and coexistence of the various ethnical groups in the Czech countries.		
B0M16HVT	History of science and technology 2	Z,ZK	5
-	historical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate stude		-
traditions of the su	bject, while highlighting the developments in technical education and professional organizations, the process of shaping scientific life	and the influence	of technica
	engineers		
B0M16PSM	Psychology	Z,ZK	5
B0M16TEO	Theology	Z,ZK	5
	des to students the basic orientation in christian theology and requires no special previous education. After short philosophic lecture	-	
are gone through. T	The subject is determined not only to believer students who want to know the reliable theologic grounding but also above all to ones wh	o want to get know	/ Christianit
	- religion from which graws our civilization up.		
B4M01TAL	Theory of Algorithms	Z,ZK	6
-	theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems ther it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of the	-	
or algorithms. Full	algorithms are studied and the classes RP and ZZP introduced.	em investigateu. r	TODADIIIStic
B4M33PAL	Advanced algorithms	Z,ZK	6
	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science -	I '	0
B4M35KO	Combinatorial Optimization	Z.ZK	6
	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term c	· ·	-
•	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmir	•	,
	tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl	•	
-	scheduling in production lines, message routing, scheduling in parallel computers.	-	
B4M36LUP	Logical Reasoning and Programming	Z,ZK	6
The course's aim is	to explain selected significant methods of computational logic. These include algorithms for propositional satisfiability checking, logic	al programming in	Prolog, an
first-o	rder theorem proving and model-finding. Time permitting, we will also discuss some complexity and decidability issues pertaining to t	he said methods.	
B4M36MAS	Computational Game Theory	Z,ZK	6
This course is des	. signed to introduce students to the fundamental concepts and applications of game theory, a powerful tool used to model strategic in	teractions among i	individuals,
organizations, or	countries. Throughout the course, we will delve into various aspects of game theory and explore its wide-ranging applications in dive	rse fields, includin	g machine
	learning and Al.	1	1
B4M36PUI	Artificial Intelligence Planning	Z,ZK	6
	the problematic of automated planning in artificial intelligence and focuses especially on domain independent models of planning pr		
-	ates (state-space planning), in the space of plans (plan-space planning), heuristic planning, planning in graph representation of planr		
	planning. The students will also learn about the problematic of planning under uncertainty and the planning model as a decision-maki	-	
B4M36SMU	Symbolic Machine Learning	Z,ZK	6
	sists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its		
	arning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inferer cs from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally		
randamentar topi	introduction to several topics from the computational learning theory, including the online and batch learning settings.		
B4M36UIR	Artificial Intelligence in Robotics	Z,ZK	6
	acquaint students with the use of planning approaches and decision-making techniques of artificial intelligence for solving problems		-
	in the course are employing knowledge of planning algorithms, game theory, and solving optimization problems in selected application	-	
	architectures of autonomous systems based on reactive and behavioral models of autonomous systems. The considered application s		
	ng, persistent environmental monitoring, robotic exploration of unknown environments, online real-time decision-making, deconfliction		•

include path planning, persistent environmental monitoring, robotic exploration of unknown environments, online real-time decision-making, deconfliction in autonomous systems, and solutions of antagonistic conflicts. In laboratory exercises, students practice their problem formulations of robotic challenges and practical solutions in a realistic robotic simulator or consumer mobile robots. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

	broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.						
B4MSVP	Software or Research Project	KZ	6				
BDIP25	Diploma Thesis	Z	25				
Independent final	ndependent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will						
be specified	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final exami	nation.				
BE4M33SSU	Statistical Machine Learning	Z,ZK	6				
The aim of statist	cal machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	or knowledge abo	ut the task.				
This includes typic	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	pts such as risk m	inimisation,				
maximum likelihoo	d estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	on and regression	and to show				
	how they can be learned by those concepts.						
TV-V1	Physical education	Z	1				
TVKLV	Physical Education Course	Z	0				
TVKZV	Physical Education Course	Z	0				
TVV	Physical education	Z	0				
TVV0	Physical education	Z	0				

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-05, time 19:47.