Recomended pass through the study plan

Name of the pass: SpaceMaster - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering

Department: Department of Control Engineering

Pass through the study plan: Erasmus Mundus Master Course - SpaceMaster II

Branch of study guranteed by the department: Cybernetics and Robotics

Guarantor of the study branch: prof. Ing. Michael Šebek, DrSc.

Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time

Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of semester: 1

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSP	CanSat-Projekt	Z,ZK	9	2P+2S	Z	Р
BE3M35ISP	Introduction to Space Physics	Z,ZK	8	2P+2S	Z	Р
BE3M35SDY	Space Dynamics	Z,ZK	5	2P+2S	Z	Р
BE3M35SSD	Spacecraft System Design	Z,ZK	8	2P+2S	Z	Р

Number of semester: 2

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35ELS	Electronics in Space	Z,ZK	8	2P+2S	L	Р
BE3M35ORO	Optic- and Radar-based Observations	Z,ZK	8	2P+2S	L	Р
BE3M35SPP	Space Plasma Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	Р

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSA	Control Systems for Aircraft and Spacecraft Martin Hromčík Martin Hromčík (Gar.)	Z,ZK	7	2P+2L	Z	Р
BE3M35IDP	Individuální projekt Kristian Hengster-Movric Kristian Hengster-Movric (Gar.)	Z	8	0P+6S	Z	Р
BE3M35SSM	Space systems, modeling and identification Petr Hušek Petr Hušek (Gar.)	Z,ZK	7	4P+2C	Z	Р

Number of semester: 4

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35DIP	Diploma Thesis Kristian Hengster-Movric, Martin Hlinovský Martin Hlinovský Kristian Hengster-Movric (Gar.)	Z	30	22S	L	Р

BE3M35ORC	Optimal and robust control design Zdeněk Hurák Zdeněk Hurák Zdeněk Hurák (Gar.)	Z,ZK	8	2P+2C	L	Р
-----------	---	------	---	-------	---	---

List of groups of courses of this pass with the complete content of members of individual groups

List of courses of this pass:

Code	Name of the course	Completion	Credits					
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7					
System Approach.	ystem Approach. Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Linear Systems. System Stabili							
Uncertai	nty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of St	ochastic Processe	S.					
BE3M35CSP	CanSat-Projekt	Z,ZK	9					
BE3M35DIP	Diploma Thesis	Z	30					
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or	her branch of study	, which will					
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examin	nation.					
BE3M35ELS	Electronics in Space	Z,ZK	8					
BE3M35IDP	Individuální projekt	Z	8					
Independent work	in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be speci	fied by branch dep	artment or					
	branch departments. The project will be defended within the framework of a subject.							
BE3M35ISP	Introduction to Space Physics	Z,ZK	8					
BE3M35ORC	Optimal and robust control design	Z,ZK	8					
This advanced cou	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computatio	nal design skills. U	nifying idea					
of the course is that	t of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante	eed. Minimizing H2	norm leads					
	LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains							
•	an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to		•					
•	aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c							
or semidefinite prog	ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control.	ool for solving all th	e previously					
DESMSEODO	'	7 71/	0					
BE3M35ORO	Optic- and Radar-based Observations	Z,ZK	8					
BE3M35SDY	Space Dynamics	Z,ZK	5					
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7					
BE3M35SPP	Space Plasma Physics	Z,ZK	7					
BE3M35SSD	Spacecraft System Design	Z,ZK	8					
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7					

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 09. 04. 2020, time 19:05.