Doporu ený pr chod studijním plánem

Název pr chodu: Master Specialization Digital Business Engineering, 2023

Fakulta: Fakulta informa ních technologií

Katedra:

Pr chod studijním plánem: Master Specialization Digital Business Engineering, 2023

Obor studia, garantovaný katedrou: Úvodní stránka

Garant oboru studia:

Program studia: Informatics

Typ studia: Navazující magisterské prezen ní

Poznámka k pr chodu: The remaining credits to the obligation to get a minimum of 120 credits can be obtained

for any course of this study plan

Kódování rolí p edm t a skupin p edm t :

P-povinné p edm ty programu, PO-povinné p edm ty oboru, Z-povinné p edm ty, S-povinn volitelné p edm ty, PV-povinn volitelné p edm ty, F-volitelné p edm ty odborné, V-volitelné p edm ty, T-t lovýchovné p edm ty

Kódování zp sob zakon ení predm t (KZ/Z/ZK) a zkratek semestr (Z/L):

KZ - klasifikovaný zápo et, Z - zápo et, ZK - zkouška, L - letní semestr, Z - zimní semestr

íslo semestru: 1

Kód	Název p edm tu / Název skupiny p edm t (u skupiny p edm t seznam kód jejích len) Vyu ující, auto i a garanti (gar.)	Zakon ení	Kredity	Rozsah	Semestr	Role
NIE-KOP	Combinatorial Optimization Petr Fišer, Jan Schmidt Petr Fišer Petr Fišer (Gar.)	Z,ZK	6	3P+1C	Z	PP
NIE-MPI	Mathematics for Informatics Francesco Dolce Št pán Starosta Št pán Starosta (Gar.)	Z,ZK	7	3P+2C	Z	PP
DA-DMI	Data Mining Michal Valenta	Z,ZK	6	30KP+30KC	Z,L	PS
		Min. p edm.				
NIE-DBE-PV1.23	Compulsory Elective Courses for Master Specialization DBE	1	Min/Max			
	- Modern Technology NIE-PDB,DD-ZUM, (pokra ování viz seznam skupin níže)	Max. p edm.	5/25			PV
		5				

íslo semestru: 2

Kód	Název p edm tu / Název skupiny p edm t (u skupiny p edm t seznam kód jejích len) Vyu ující, auto i a garanti (gar.)	Zakon ení	Kredity	Rozsah	Semestr	Role
NIE-PDP	Parallel and Distributed Programming Pavel Tvrdík Pavel Tvrdík (Gar.)	Z,ZK	6	2P+2C	L	PP
NIE-VSM	Selected statistical Methods Petr Novák Pavel Hrabák Pavel Hrabák (Gar.)	Z,ZK	7	4P+2C	L	PP
DA-DRS	Digital Risk And Security Michal Valenta	Z,ZK	6	30KP+30KC	Z	PS
NIE-DBE-PVA.23	Compulsory Elective Courses for Master DBE Specialization A - Normalized Systems Theory NIE-NSS,DA-SEA	Min. p edm. 1 Max. p edm. 1	Min/Max 5/9			PV

íslo semestru: 3

Kód	Název p edm tu / Název skupiny p edm t (u skupiny p edm t seznam kód jejích len) Vyu ující, auto i a garanti (gar.)	Zakon ení	Kredity	Rozsah	Semestr	Role
DD-DIN	Digital innovation Michal Valenta	ZK	6		Z	PS
DD-DSG	Digital strategy and governance Michal Valenta	ZK	6	2P+2C	Z	PS
DD-SMN	Strategic management Michai Valenta	ZK	6	4P+0C	Z	PS
NIE-MPR	Master Project Zden k Muziká Zden k Muziká (Gar.)	Z	7		Z,L	PV

	Compulsory Elective Courses for Master Double degree	Min. p edm.	Min/Max			
NIE-DBE-PVB.23	Specialization DBE B - Engineering and Ethics DD-DSE,DA-ESB	Max. p edm.	3/6		PV	

íslo semestru: 4

Kód	Název p edm tu / Název skupiny p edm t (u skupiny p edm t seznam kód jejích len) Vyu ující, auto i a garanti (gar.)	Zakon ení	Kredity	Rozsah	Semestr	Role
NIE-DIP	Diploma Project Zden k Muziká Zden k Muziká Zden k Muziká (Gar.)	Z	30	270ZP	L,Z	PP

Seznam skupin p edm t tohoto pr chodu s úplným obsahem len jednotlivých skupin

Kód		Název skupiny p ed (specifikace)	lm t a kódy viz zde nebo r	len této skupiny p edm t íže seznam p edm t)	Zak	on ení	Kredity	Rozsah	Semestr	Role
NIE-DBI	E-PV1.23	Compulsory Elective	ve Courses for - Modern Tec	r Master Specialization DBE hnology	:	p edm. 1 p edm 5	Min/Max			PV
NIE-PDB	Advanced	Database Systems	DD-ZUM	Artificial Intelligence Fundamen		NIE-BLC	BI	ockchain		
NIE-AM1	Middleware	e Architectures 1	NIE-SWE	Semantic Web and Knowledge Gr	raph					
NIE-DBI	E-PVA.23	Compulsory Electiv A - N	ve Courses for lormalized Sys	r Master DBE Specialization stems Theory	1	p edm. 1 p edm	Min/Max	\$		PV
						1				
NIE-NSS	Normalized	d Software Systems	DA-SEA	Software Engineering And Archite))	1				
NIE-NSS	Normalized	Compulsory Elec	ctive Courses	Software Engineering And Archite for Master Double degree gineering and Ethics	Min.	p edm. 1 p edm	Min/Max	(PV

Seznam p edm t tohoto pr chodu:

Kód	Název p edm tu	Zakon ení	Kredity				
DA-DMI	Data Mining	Z,ZK	6				
In the past decade, weve witnessed a huge increase in the amount of data being captured and stored. In these large datasets very useful knowledge is present, though often concea							
in the vastness of	the data. With data mining techniques patterns are automatically revealed from such large datasets. First, data mining techniques an	d applications are	discussed.				
Next, we will go int	to popular predictive and descriptive data mining techniques, with applications in marketing and risk management. Also, analyses suc	ch as social netwo	rk analysis,				
text mining, proce	iss mining, and Big Data will be looked at. Basic programming skills in Python will be learnt. The learned concepts, techniques and pi	rogramming langua	age will be				
	applied and evaluated with a real-life case. Teaching takes place at University of Antwerpen. See the web page						
	https://www.uantwerpen.be/en/study/programmes/all-programmes/digital-business-engineering/about-the-programme/study-prog	ramme/					
DA-DRS	Digital Risk And Security	Z,ZK	6				
Information technol	ogy has become crucial in the growth, sustainability and support of enterprises. However, the pervasive use of technologies also incui	rs many business r	isks, anging				
from abuse, cybero	crime, fraud, errors and ommissions. The objective of this course is to understand and analyse IT related business risks and and how	these risks can be	e translated				
into an appropiate in	nformation risk management and security strategy and action plan. In the course, will first discuss the basics of IT Risk, Information Se	curity, and some of	the general				
and specific standa	rds and frameworks to address them. Next, we will elaborate on the IT risk management and IT security functions in an organisation.	Specific attention	will be given				
to risk assessmer	nt methods, both qualitative and quantitative. The theoretical knowledge will be applied in a group project, where students will conduc	t a risk assessmer	nt in a real				
	organisation, and present the results to the responsible managers. Guarantor and teacher: MSc. Steven De Haes, Ph.D						
DA-ESB	Ethical And Sustainable Business	ZK	3				
This course covers	corporate responsibility, morality and sustainability. It has three main parts: Part 1: Ethics and morality in business History of ethics in	business Origins,	stakeholder				
theory, basic philos	theory, basic philosophy Utilitarianism vs Kantian approaches Behavioural economic. Part 2: Corporate responsibility and sustainability in theory Shared value creation, social profit,						
social entrepreneur	ship Sustainable HR Circular Economy Green Deal and CSRD New business models for sustainability. Part 3: Corporate responsibilit	ty and sustainabilit	y in practice				
Implementing sustainability in the value chain of a company: products, operations, organisation and HR How to apply a management approach to sustainability. Teaching takes place							

at University Antwerpen. See the web page https://www.uantwerpen.be/en/study/programmes/all-programmes/digital-business-engineering/about-the-programme

DA-SEA Software Engineering And Architecture Z,ZK Basic software engineering structures, practices, and patterns are explained in a realistic software engineering environment using the Java progarmming language. Practical assignments complement these lectures. Basic software architecture structures, practices, and patterns are explained and discussed, including various aspects of evolvability. Video lectures and a practical assignment deepen this. Teaching takes place at University of Antwerpen. See the web page https://www.uantwerpen.be/en/study/programmes/all-programmes/digital-business-engineering/about-the-programme/study-programme/ DD-DIN Digital innovation 7K 6 This course focuses on innovation in the context of the digital, software-intensive economy. Starting from a broader perspective on innovation, both mainstream theories and thinking on innovation, as well as alternative views from challengers, are discussed. This includes omnipresent innovation models in which IT-related innovations are adopted by startups and scaleups (eg. blockchains or drones) and making them available in certain business domains, which requires agility and speed of development at the software level. Also, disruptive innovation, where existing value chains are challenged, is discussed with its requirement for new levels of productivity in software development. Leading theories are discussed and illustrated with local and international cases using guest lectures. Students of a master double degree specialisation Digital Business Engineering will attend this course during their stay at the partner university Antwerp DD-DSF Data science and ethics 7K 3 Ethics tell us about right and wrong. The course will provide an overview of key: (1) concepts, related to privacy, discrimination, transparency, and explainability, (2) techniques to assess and improve on these aspects, and (3) cautionary tales that motivate the importance thereof. The consideration of data science ethics is crucial for any data-driven company, as will be motivated by ample cautionary tales. With a wide range of cases, the large implications of new data science technologies on ethics will be discussed. These include online tracking, medical records, Facebook data, Internet censorship, big data, privacy engineering, and Artificial Intelligence. Data scientists and business managers are not inherently unethical, but at the same time not trained to think this through neither. This course aims to address this important gap. Students of a master double degree specialisation Digital Business Engineering will attend this course during their stay at the partner university Antwerp DD-DSG Digital strategy and governance The course provides a complete and comprehensive overview of what digital governance entails and how it can be applied in practice. The course is organized around the following three main themes: concepts and practices of digital governance, the impact of digital governance on business/IT strategic and operational alignment, and the notion of digital value and risk. The course is based on the teacher's knowledge obtained in applied research projects on the relationship between digital governance practices and digital value. To support the student in understanding and absorbing the material provided, the course uses short assignments and case studies. Students of a master double degree specialisation Digital Business Engineering will attend this course during their stay at the partner university Antwerp Strategic management In the first part of the course, the different concepts and perspectives of strategic management are analyzed. The basic characteristics of strategic thinking are being analyzed. Then the importance of mission/vision, as the starting point in strategic thinking, is being discussed. This is being linked to the broader concept of sustainability / corporate social responsibility. The remaining parts focus on the three basic dimensions of strategy: (1) the strategy content: business level strategy, corporate level strategy, and network level strategy (2) the strategy process: strategic formation, strategic change, and strategic innovation, (3) the strategy context: the industry context, the organizational context, and the international context. In each of the different chapters, the fundamental strategic management paradoxes are situated and evaluated in the strategic management theory. Attention is also given to some strategic management tools which can be used to manage the strategy process. Students of a master double degree specialisation Digital Business Engineering will attend this course during their stay at the partner university Antwerp Artificial Intelligence Fundamentals Students are introduced to the fundamental problems in the Artificial Intelligence, and the basic methods for their solving. It focuses mainly on the classical tasks from the areas of state space search, multi-agent systems, game theory, planning, and machine learning. Modern soft-computing methods, including the evolutionary algorithms and the neural networks, will be presented as well. This course is only for students of the double degree program with the University of Antwerp. Other students are not allowed to enrol this course, enrol the BIF-ZUM course instead Middleware Architectures 1 NIE-AM1 Z,ZK Students will study new trends, concepts, and technologies in the area of service-oriented architectures. The will gain an overview of information system architecture, web service architecture and aplication servers. The will also study principles and technologies for middleware focused on application integrations, asynchronous communications and high availability of applications. This course replaces the course MIE-MDW. NIE-BLO Blockchain Students will understand the foundations of blockchain technology, smart contract programming, and gain an overview of most notable blockchain platforms. They will be able to design, code and deploy a secure decentralized application, and assess whether integration of a blockchain is suitable for a given problem. The course places an increased emphasis on the relationship between blockchains and information security. It is concluded with a defense of a research or applied semester project, which prepares the students for implementing or supervising implementation of blockchain-based solutions in both academia and business. NIE-DIP Ζ Diploma Project 30 NIE-KOP Z.ZK Combinatorial Optimization 6 The students will gain knowledge and understanding necessary deployment of combinatorial heuristics at a professional level. They will be able not only to select and implement but also to apply and evaluate heuristics for practical problems. NIE-MPI Mathematics for Informatics Z,ZK The course focuses on selected topics from general algebra with emphasis on finite structures used in computer science. It includes topics from multi-variate analysis, smooth optimization, and multi-variate integration. The third large topic is computer arithmetics and number representation in a computer along with error manipulation. The last topic includes selected numerical algorithm and their stability analysis. The topics are completed with the demonstration of applications in computer science. The course focuses on clear presentation and argumentation. NIE-MPR Master Project 1. At the beginning of the semester, a student reserves her/his final thesis topic and gets together with its supervisor. Together they decide on partial tasks that should be carried out during the semester. If the requirements they agreed upon are met, the supervisor awards the student an assessment for the course MI-MPR at the end of the semester. 2. The external supervisor enters the information on granting the credit using the form "Granting credit from the external supervisor of the final thesis" (http://fit.cvut.cz/student/studijni/formulare). The completed and signed form must be delivered in person or by email to the SZZ coordinator, who will arrange for the credit to be granted. 3. If the FT topic that the student has reserved is rather general, the immediate tasks the supervisor assigns to the student for the upcoming semester should aim at fine-tuning the FT topic so that the FTT will be complete and approvable at the end of the semester. **NIE-NSS** Normalized Software Systems Students will learn the foundations of normalized systems theory that studies the evolvability of modular structures based on concepts from engineering, such as stability from system theory and entropy from thermodynamics. Students will understand a set of principles that indicate where violations of stability and entropy-related issues occur in any given software architecture. In the second part of the course, students learn how to construct software architectures using a set of 5 design patterns called elements. These elements provide the core functionality of information systems in terms of storing data, executing actions, workflows, connectors, and triggers, while handling violations of the stability and entropy-related principles. This knowledge allows students to realize new levels of evolvability in software architectures. NIE-PDB Advanced Database Systems Z,ZK Students orient themselves in problems of evaluation and optimization of SQL queries. The next part of the course deals with new concepts of database machines (so called NoSQL databases), with the related new data models (XML, graph databases, column databases) and languages for working with them (XQuery, XPath, CYPHER, Gremlin). The last part of the course deals with performance evaluation of database machines. This course is equivalent to the course MIE-PDB.

NIE-PDP	Parallel and Distributed Programming	Z,ZK	6					
21st century in computer architectures is primarily influenced by the shift of the Moore's law into parallelization of CPUs at the level of computing cores. Parallel computing systems								
are becoming a ubiquitous commodity and parallel programming becomes the basic paradigm of development of efficient applications for these platforms. Students get acquainted								
with architecture	with architectures of parallel and distributed computing systems, their models, theory of interconnection networks and collective communication operations, and languages and							
environments for	parallel programming of shared and distributed memory computers. They get acquianted with fundamental parallel algorithms and or	selected problem	s, they will					
learn the technique	es of design of efficient and scalable parallel algorithms and methods of performance evaluation of their implementations. The course	includes a semest	er project of					
	practical programming in OpenMP and MPI for solving a particular nontrivial problem.							
NIE-SWE	Semantic Web and Knowledge Graphs	Z,ZK	5					
The students will	earn the most recent concepts and technologies of the Semantic Web. The course will provide an overview of the Semantic Web tec	hnologies, method	s and best					
practices for mod	lelling, integration, publishing, querying and consumption of semantic data. The students will also gain skills in creation of knowledge	graphs and their s	systematic					
	quality assurance.							
NIE-VSM	NIE-VSM Selected statistical Methods Z,ZK 7							
Summary of probab	illity theory; Multivariate normal distribution; Entropy and its application to coding; Statistical tests: T-tests, goodness of fit tests, independ	dence test; Randor	n processes					
	- stacionarity; Markov chains and limiting properties; Queuing theory							

Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/FF.html Generováno: dne 22.07.2025 v 09:43 hod.