Study plan

Name of study plan: Prospectus - magisterský

Faculty/Institute/Others: Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Biomedical and Clinical Engineering Type of study: Follow-up master full-time Required credits: 0 Elective courses credits: 0 Sum of credits in the plan: 0 Note on the plan:

Name of the block: pomocná Minimal number of credits of the block: 0 The role of the block: !

Code of the group: PRO-M-2 Name of the group: Courses that will be open if at least five students are registered Requirement credits in the group: Requirement courses in the group: Credits in the group: 0

Note on the group:

Note on the gro						
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
F7AMBAEM	Electromagnetic Field in Medicine Jan Vrba, David Vrba, Tomáš Pokorný Jan Vrba Jan Vrba (Gar.)	Z,ZK	3	1P+1L	Z	!
F7AMBBLS	Biological Signals Václava Piorecká, Marek Piorecký Václava Piorecká Marek Piorecký (Gar.)	ZK	3	2P	L	!
F7AMBMZOS	Methods and Devices for Processing, Compression and Recording of Image Signal Marek Novák, Ji í Hozman, Tomáš Díž al Tomáš Díž al Tomáš Díž al (Gar.)	Z	3	1P+1C	Z	!
F7AMBPMZD	Advanced Methods of Data Analysis and Processing Václava Piorecká, Marek Piorecký, Jan Štrobl Václava Piorecká Václava Piorecká (Gar.)	КZ	3	1P+1C	Z	!
F7AMBSPMM	Software for Mathematical Modeling Bartolom j Biskup Bartolom j Biskup (Gar.)	Z,ZK	5	2P+2C	Z	!
F7AMBTTZS	Television, Termovision and Endoscopy Systems Ji í Hozman, Tomáš D íž al Ji í Hozman Ji í Hozman (Gar.)	Z	3	1P+1L	L	!
F7AMBZMR	Magnetic Resonance Imaging and Electrical Impedance Tomography David Vrba, Tomáš D íž al David Vrba	z	3	1P+1L	z	ļ

Characteristics of the courses of this group of Study Plan: Code=PRO-M-2 Name=Courses that will be open if at least five students are registered

F7AMBAEM	Electromagnetic Field in Medicine	Z,ZK	3		
The major aim of these	lectures is to explain to students the present and probable future possibilities of microwave medical applications. Biological ti	hermal and non-tl	nermal effects of		
electromagnetic field as	well as safety limits are discussed. Microwave thermotherapy applied to cancer and other diseases is described. Details of mi	crowave thermoth	erapy apparatus		
are given, especially fro	m the point of view of applicators for local, intracavitary and regional treatment.				
F7AMBBLS	Biological Signals	ZK	3		
The subject deals with o	rigins and description of the most important electric and non-electric biological signals. The principles of generation, recordin	, g and basic prope	rties are studied		
in all the signals. The st	udied signals involve native and evoked biosignals, including biological signals of the heart, brain, muscles, nervous system,	auditory signals,	visual system,		
signals from the gastro-intestinal system etc.					
F7AMBMZOS	Methods and Devices for Processing, Compression and Recording of Image Signal	Z	3		
The course deals with the following topics: general image processing system, basics of image acquisition using image sensors, sampling, quantization and representation of digital					
images, aliasing, transfer properties of the imaging system, color image acquisition, overview of image formats, digitizing rasters, video signal, A/D video signal converters, frame-grabber.					
HW and SW for image processing, compression methods, compression standards, signal recording methods, digital signal recording, selected recording standards for image recording,					
specifics for applications in clinical practice.					

F7AMBPMZD	Advanced Methods of Data Analysis and Processing	KZ	3	
This course comprehen	ds/deals methods of biosignal generation, biosignal acquisition and basic parameters of biosignals required for diagnostics. No	thods and algorith	nms for biosignal	
processing, analysis and	d evaluation used for biological signals, mainly electrophysiological signals. Preprocessing, filtering, time and frequency analysi	s. Use of modern :	spectral analysis	
methods. Visualisation	of results, topographic mapping, method of compressed spectral arrays (CSA). Adaptive segmentation of non-stationary signa	als is discussed. A	Application of	
methods using artificial	intelligence. Methods of automated signal classification - supervised/unsupervised, cluster analysis, learning classifier. Artificia	l neural networks	(ANN). Practical	
application of biosignal	processing. Case studies of ANN application on epileptogenic recordings and neural recordings in general. Genetic algorithm	ns and simulated a	annealing is	
presented.				
F7AMBSPMM	Software for Mathematical Modeling	Z,ZK	5	
F7AMBTTZS	Television, Termovision and Endoscopy Systems	Z	3	
History of television sys	ems. Overview of television systems. Scene representation (linear transformation in 3D space, lens representation as collineat	ion, projection). In	nage information	
(light, photometry, color	imetry, light sources, vision, quantitative description of image information, image spectrum). Television system. Physical limita	tions of resolution	and correlation	
of image characteristics	and system characteristics. TV system resolution. Creating video signal. Non-standard TV shooting. Black and white versus	color TV system.	Application of	
TV imaging systems in medicine. Physical quantities describing radiation and light. Physical laws for heat emitter. Principle of the operation of infrared imaging system and its diagnostic				
importance. Specifics o	f thermal imaging systems. Block diagram. Description of individual blocks and circuits. History of endoscopes. Types of endo	scopes. Fundame	entals of theory	
and practice of optical fibers. Flexible fibroscopes. Flexible video endoscopes. Light sources for flexible endoscopes. Image sensors used for endoscopes. Image processors. Monitors				
for video endoscopes. E	ndosonographic systems. Sterilization equipment. Automatic disinfectors for endoscopes. Standard procedures. Possible prot	olems. Capsule im	aging. Principle.	
Block arrangement. Wir	eless transmission and data processing. Possible complications.			
F7AMBZMR	Magnetic Resonance Imaging and Electrical Impedance Tomography	Z	3	
The course deals with t	he following topics: nuclear magnetic resonance and electrical impedance tomography, theoretical foundations, principles of i	maging methods	and their use in	
all a facal ta an at la a suddle ta a	pect to the limitations of technical parameters.			

Code of the group: PRO-M-0 Name of the group: Courses that will certainly be open

Requirement credits in the group:

Requirement courses in the group:

Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
F7AMBAF	Applied Physics Milan Ši or Milan Ši or (Gar.)	Z,ZK	5	2P+2C	Z	!
F7AMBAM	Applied Mathematics Ji í Hozman, Ond ej Fišer, Karel Roubík, Martin Rožánek Ond ej Fišer Martin Rožánek (Gar.)	КZ	4	2P+1C	Z	!
F7AMBBB	Biomechanics and Biomaterials Matej Daniel, Martin Otáhal Martin Otáhal Matej Daniel (Gar.)	Z,ZK	5	2P+2L	Z	!
17AVACC	Czech for Foreigners Eva Moty ková, Hana Rogalewiczová, Vladimír Rogalewicz Eva Moty ková Eva Moty ková (Gar.)	КZ	3	4C	Z,L	!
F7AMBCZS	Digital Signal Processing Václava Piorecká, Marek Piorecký, Jan Štrobl Václava Piorecká Václava Piorecká (Gar.)	Z,ZK	5	2P+2C	Z	!
F7AMBELEG	European Legislation and Management in Health Care Peter Kneppo, Vojt ch Kamenský, Ond ej Gajdoš Vojt ch Kamenský Peter Kneppo (Gar.)	Z,ZK	5	2P+2C	Z	!
F7AMBLPT	Medical Devices and Equipment Martin Rožánek, Petr Kudrna Petr Kudrna Martin Rožánek (Gar.)	Z,ZK	5	2P+2L	L	!
F7AMBLZS	Imaging Systems in Medicine Ji í Hozman, Tomáš D íž al, Martin Rožánek Martin Rožánek (Martin Rožánek (Gar.)	Z,ZK	5	2P+2C	L	!
F7AMBMPV	Mathematical Methods in Research Jakub Ráfi Jakub Ráfi Karel Roubík (Gar.)	Z,ZK	6	2P+2C	Z	!
F7AMBMAR	Measurement and Control in Biomedicine Peter Kneppo, Jana Mat jková, Roman Mat jka Roman Mat jka Peter Kneppo (Gar.)	Z,ZK	5	2P+2L	L	!
F7AMBPIZ	Methodology of Research and Information Sources Jakub Ráfl, Šimon Walzel Jakub Ráfl Jakub Ráfl (Gar.)	KZ	5	2P+2C	L	!
F7AMBSF	Systemic Physiology lan Azarov, Ksenia Sedova Pavel Ku era Pavel Ku era (Gar.)	Z,ZK	5	2P+2L	Z	!
F7AMBTANP	Equipment for Anesthesia and Critical Care Karel Roubík, Václav Ort Jakub Ráfi Karel Roubík (Gar.)	Z,ZK	5	2P+2L	Z	!
17AVARP1	Research Project I. Ji í Hozman, Evgenila Karnoub, Petr Kudrna, Hana D cká Petr Kudrna Petr Kudrna (Gar.)	κz	10	8D+2S	L,Z	!
17AVARP2	Research Project II. Ji í Hozman, Evgeniia Karnoub, Petr Kudrna, Hana D cká Petr Kudrna Petr Kudrna (Gar.)	КZ	10	8D+2S	L,Z	!
17AVARP3	Research Project III. Ji í Hozman, Evgeniia Karnoub, Martin Otáhal, Petr Kudrna, Hana D cká Petr Kudrna Petr Kudrna (Gar.)	КZ	10	8D+2S	L,Z	!

Characteristics of the courses of this group of Study Plan: Code=PRO-M-0 Name=Courses that will certainly be open

F7AMBAF Applied Physics	Z,ZK	5
Fundamentals of thermodynamics, the kinetic theory of gases. Transport phenomena in gases and in liquids. Electromagnetic field and interaction	1 1	onic structure of
atoms and molecules. Physics of low temperatures and superconductivity. Magnetic resonance and its application. Foundations of X-rays diffractio	n and X-ray structu	re analysis.
F7AMBAM Applied Mathematics	KZ	4
The course deals with the practical applications of mathematics and its demonstration with examples from the field of biomedical engineering.	1	I
F7AMBBB Biomechanics and Biomaterials	Z,ZK	5
The aim of the course is to introduce students to the areas of biomechanics. These are circuits of clinical, sports and orthopaedic biomechanics. Ir	1	dents will be
introduced to methods of measurement in experimental biomechanics, biomechanics of the musculoskeletal system, assessment of movement in	biomechanics and	rehabilitation,
assessment of gait and standing still, assessment of work and performance, force and moment effects, anthropometry, material properties, loading r	nethods, deformati	on and modelling
of biomaterials, rheological models of tissues. Students will also learn about the areas of orthosis and prosthesis design and ergonomics in relatio	n to biomechanics.	
17AVACC Czech for Foreigners	KZ	3
Survival Czech	1	I
F7AMBCZS Digital Signal Processing	Z,ZK	5
The course deals with the following topics - characteristics of signals, linear time invariant systems (LTI), stationary, non-stationary signals, determ	1	-
processes, description of signals in continuous and discrete domains, A/D conversions and converters, sampling and quantization problems, aliasi	-	
suppression and data preprocessing, fast and discrete Fourier transforms, efficient FFT estimation methods, other discrete transforms: z-transform	n, its properties and	l applications in
DSP, inverse transforms, poles and zeros of the system, frequency response, correlation and convolution, introduction to digital filter design, FIR a	nd IIR filters and ad	aptive filters,
spectral analysis and spectrum estimation methods, current methods of analysis in time and frequency domain, coherence and phase characterisi	tics, parametric and	I non-parametric
methods, periodogram and AR spectrum.		
F7AMBELEG European Legislation and Management in Health Care	Z,ZK	5
The course focuses on an overview of legislative regulations in the healthcare sector with a subsequent focus on medical devices. The course will c		d practical issues
of patients' rights in healthcare, ethics in biomedicine, healthcare systems, marketing of medical devices, technical standardization systems and in	dustrial property pi	otection.
F7AMBLPT Medical Devices and Equipment	Z,ZK	5
The course develops the initial knowledge in the field of biophysics and human physiology and applies it to the problems of instrumental medical te	1 '	1
deals with the principles of operation and current possibilities of technology in medicine. The content is chosen to be sufficient for understanding and		
courses. The course deals with diagnostic devices, devices for monitoring and evaluation of vital functions, therapeutic devices, including equipme	-	-
as ICU, operating rooms, etc.		
F7AMBLZS Imaging Systems in Medicine	Z,ZK	5
The course deals with advanced imaging techniques, which are used mainly for diagnostic purposes in clinical practice. Emphasis will be placed on t		-
on the possibilities and limitations of individual modalities. The issue of image reconstruction in tomographic imaging systems will also be address		,
F7AMBMPV Mathematical Methods in Research	Z,ZK	6
The course deals with the following topics: methods of statistical analysis intended primarily for medical research - clinical, biological, biochemical,		-
methods of descriptive and inductive statistics, statistical epidemiological methods, hypothesis testing, group comparison (parametric and non-paran		
and simple regression analysis, multivariate regression models, multivariate linear models, logistic regression, discriminant analysis, survival analy		
interpretation of results.	,,	
F7AMBMAR Measurement and Control in Biomedicine	Z,ZK	5
The course deals with the following topics - measurement of electrical and non-electrical quantities using conventional laboratory instruments, indu		-
cards such as DAQ, low-cost solutions with MCUs such as Arduino, as well as factors affecting the accuracy and stability of measurements both at the		
themselves, as well as the correct interpretation of these data and the expression of measurement uncertainty and calibration, Machine vision, wit		
standards, and the basics of image recognition, control will include the fundamentals of automation, design of state and sequential automata, add		
of threshold and proportional controllers, demonstrations on biomedical applications, and new trends in measurement, control and automation usin		
technology.		
F7AMBPIZ Methodology of Research and Information Sources	KZ	5
The course deals with the following topics: characteristics of research and science, types of research, links to legislation and financial resources, r	esearch projects, g	rant applications
and grant process; basic characteristics and specifics of a scientific text, content of individual sections; publishing practices, publication ethics, cita	tions sources, infor	mation sources;
typographic rules, mathematical typesetting, text corrections; principles for creating presentations, presentation of results in the form of tables, gra	ohs and diagrams.	
F7AMBSF Systemic Physiology	Z,ZK	5
The course deals with the following themes: functional organisation of living systems, basic concepts of system approach to integrated functions of		1
of systems offering the use for biomedical technicians and engineers, examples of some experimental and investigative methods and modern tech	-	-
medicine. Lectures contain also problem solving.		
F7AMBTANP Equipment for Anesthesia and Critical Care	Z,ZK	5
Basic concept or resuscitation. Importance of circulation, respiration, consciousness and internal environment, their control. Equipment overview, of	1 1	1
requirements for equipment at intensive care units (ICU) and departments of anaesthesia and critical care medicine (ACCM). Blood gases, their m		-
Modelling of the fluidic systems, parameters and properties of the fluidic models. Principles and adverse effects of artificial lung ventilation (ALV). (-
lung ventilation, corresponding ventilators. Equipment for anaesthesia. Anaesthetic vaporisers, their thermodynamic principles. Humidification of ve	entilatory gases. Eq	uipment for
monitoring and support of blood circulation. Dilution methods. Bed-side monitors. Other diagnostic and therapeutic equipment at ICU and ACCM.	Design of ICU and	ACCM.
17AVARP1 Research Project I.	KZ	10
Methodology study Outputs (written text and presentations using required templates, both in English):methodology (background, SOTA, statement	of the project object	tives hypothesis
and aims, methods, potential significance and applications, time schedule, outline of the project content, relationship between student and supervise		
internal and external collaboration, financing budget for project, list of references based on the ISO690 and ISO 690-2 standard) Registration and lir	nitations: There are	no prerequisites
and this course can be registered by students within the student exchange programme Erasmus+ only. Formal administration: The formal assignm	ent of the selected	topic in English
approved within the system PROJECTS is required.		
17AVARP2 Research Project II.	KZ	10
Simulation/implementation study Outputs (written text and presentations using required templates, both in English): full description of the model, de	scription of the sim	ulation steps and
optimizations and/or design of the electrical circuits and other components (phantoms), design of printed boards, *.stl file for 3D printing and/or SV	V implementation R	egistration and
limitations: There are no prerequisites and this course can be registered by students within the student exchange programme Erasmus+ only. For	nal administration:	The formal
assignment of the selected topic in English approved within the system PROJECTS is required.		
17AVARP3 Research Project III.	KZ	10
Experimental study Outputs (written text and presentations using required templates, both in English): block scheme of measurement, measurement	ent protocol (see re	evant template)
and/or SW verification, results, data statistical processing, discussion Registration and limitations: There are no prerequisites and this course can	be registered by stu	idents within the
student exchange programme Erasmus+ only. Formal administration: The formal assignment of the selected topic in English approved within the s	ystem PROJECTS	is required.

List of courses of this pass:

Code	Name of the course	Completion	Credits
17AVACC	Czech for Foreigners Survival Czech	KZ	3
17AVARP1	Research Project I.	KZ	10
	Outputs (written text and presentations using required templates, both in English):methodology (background, SOTA, statement of the		
	potential significance and applications, time schedule, outline of the project content, relationship between student and supervisor, re al collaboration, financing budget for project, list of references based on the ISO690 and ISO 690-2 standard) Registration and limitation		
	n be registered by students within the student exchange programme Erasmus+ only. Formal administration: The formal assignment o approved within the system PROJECTS is required.		
17AVARP2	Research Project II.	KZ	10
	intation study Outputs (written text and presentations using required templates, both in English): full description of the model, descript		-
	or design of the electrical circuits and other components (phantoms), design of printed boards, *.stl file for 3D printing and/or SW imp		
limitations: There	e are no prerequisites and this course can be registered by students within the student exchange programme Erasmus+ only. Forma assignment of the selected topic in English approved within the system PROJECTS is required.	l administration: Th	e formal
17AVARP3	Research Project III.	KZ	10
	Outputs (written text and presentations using required templates, both in English): block scheme of measurement, measurement pr		
	ion, results, data statistical processing, discussion Registration and limitations: There are no prerequisites and this course can be reg		
-	e programme Erasmus+ only. Formal administration: The formal assignment of the selected topic in English approved within the syst		-
F7AMBAEM	Electromagnetic Field in Medicine ese lectures is to explain to students the present and probable future possibilities of microwave medical applications. Biological therr	Z,ZK	3 al offects of
-	d as well as safety limits are discussed. Microwave thermotherapy applied to cancer and other diseases is described. Details of microv		
electronagnetic nel	are given, especially from the point of view of applicators for local, intracavitary and regional treatment.) apparatuo
F7AMBAF	Applied Physics	Z,ZK	5
	nermodynamics, the kinetic theory of gases. Transport phenomena in gases and in liquids. Electromagnetic field and interaction with		
atoms and moleo	cules. Physics of low temperatures and superconductivity. Magnetic resonance and its application. Foundations of X-rays diffraction a	nd X-ray structure	analysis.
F7AMBAM	Applied Mathematics	KZ	4
	The course deals with the practical applications of mathematics and its demonstration with examples from the field of biomedical en	gineering.	
F7AMBBB	Biomechanics and Biomaterials	Z,ZK	5
	burse is to introduce students to the areas of biomechanics. These are circuits of clinical, sports and orthopaedic biomechanics. In pa		
	hods of measurement in experimental biomechanics, biomechanics of the musculoskeletal system, assessment of movement in bior		
-	and standing still, assessment of work and performance, force and moment effects, anthropometry, material properties, loading metho rials, rheological models of tissues. Students will also learn about the areas of orthosis and prosthesis design and ergonomics in rela		-
F7AMBBLS	Biological Signals	ZK	3
	vith origins and description of the most important electric and non-electric biological signals. The principles of generation, recording ar		
-	he studied signals involve native and evoked biosignals, including biological signals of the heart, brain, muscles, nervous system, au		
	signals from the gastro-intestinal system etc.		
F7AMBCZS	Digital Signal Processing	Z,ZK	5
	s with the following topics - characteristics of signals, linear time invariant systems (LTI), stationary, non-stationary signals, determini	-	
-	ption of signals in continuous and discrete domains, A/D conversions and converters, sampling and quantization problems, aliasing a		
	ata preprocessing, fast and discrete Fourier transforms, efficient FFT estimation methods, other discrete transforms: z-transform, its sforms, poles and zeros of the system, frequency response, correlation and convolution, introduction to digital filter design, FIR and I		
	ad spectrum estimation methods, current methods of analysis in time and frequency domain, coherence and phase characteristics, p	-	
	methods, periodogram and AR spectrum.		parametric
F7AMBELEG	European Legislation and Management in Health Care	Z,ZK	5
	on an overview of legislative regulations in the healthcare sector with a subsequent focus on medical devices. The course will cover t		
of patients' righ	ts in healthcare, ethics in biomedicine, healthcare systems, marketing of medical devices, technical standardization systems and ind	ustrial property pro	otection.
F7AMBLPT	Medical Devices and Equipment	Z,ZK	5
	ps the initial knowledge in the field of biophysics and human physiology and applies it to the problems of instrumental medical technology		
•	ples of operation and current possibilities of technology in medicine. The content is chosen to be sufficient for understanding and mast		•
courses. The cours	e deals with diagnostic devices, devices for monitoring and evaluation of vital functions, therapeutic devices, including equipment for as ICU, operating rooms, etc.	specialized depart	ments such
F7AMBLZS	Imaging Systems in Medicine	Z,ZK	5
	ith advanced imaging techniques, which are used mainly for diagnostic purposes in clinical practice. Emphasis will be placed on the tec		the devices,
	the possibilities and limitations of individual modalities. The issue of image reconstruction in tomographic imaging systems will also be		
F7AMBMAR	Measurement and Control in Biomedicine	Z,ZK	5
	vith the following topics - measurement of electrical and non-electrical quantities using conventional laboratory instruments, industria low-cost solutions with MCUs such as Arduino, as well as factors affecting the accuracy and stability of measurements both at the leve		
	If as the correct interpretation of these data and the expression of measurement uncertainty and calibration, Machine vision, with a f		
	basics of image recognition, control will include the fundamentals of automation, design of state and sequential automata, addressi		
	roportional controllers, demonstrations on biomedical applications, and new trends in measurement, control and automation using F		-
	technology.		
F7AMBMPV	Mathematical Methods in Research	Z,ZK	6
	s with the following topics: methods of statistical analysis intended primarily for medical research - clinical, biological, biochemical, bio		
methods of descript	ive and inductive statistics, statistical epidemiological methods, hypothesis testing, group comparison (parametric and non-parametric	methods), ANOVA	, correlation

and simple regression analysis, multivariate regression models, multivariate linear models, logistic regression, discriminant analysis, survival analysis interpretation of results.	etc., model calcula	itions and		
F7AMBMZOS Methods and Devices for Processing, Compression and Recording of Image Signal The course deals with the following topics: general image processing system, basics of image acquisition using image sensors, sampling, quantization images, aliasing, transfer properties of the imaging system, color image acquisition, overview of image formats, digitizing rasters, video signal, A/D video signal HW and SW for image processing, compression methods, compression standards, signal recording methods, digital signal recording, selected recording specifics for applications in clinical practice.	nal converters, frar	ne-grabber.		
F7AMBPIZ Methodology of Research and Information Sources	KZ	5		
The course deals with the following topics: characteristics of research and science, types of research, links to legislation and financial resources, resear and grant process; basic characteristics and specifics of a scientific text, content of individual sections; publishing practices, publication ethics, citations typographic rules, mathematical typesetting, text corrections; principles for creating presentations, presentation of results in the form of tables, g	sources, information	on sources;		
F7AMBPMZD Advanced Methods of Data Analysis and Processing	KZ	3		
This course comprehends/deals methods of biosignal generation, biosignal acquisition and basic parameters of biosignals required for diagnostics. Metho	ds and algorithms f	or biosignal		
processing, analysis and evaluation used for biological signals, mainly electrophysiological signals. Preprocessing, filtering, time and frequency analysis. U	se of modern spect	tral analysis		
methods. Visualisation of results, topographic mapping, method of compressed spectral arrays (CSA). Adaptive segmentation of non-stationary signals	s is discussed. App	lication of		
methods using artificial intelligence. Methods of automated signal classification - supervised/unsupervised, cluster analysis, learning classifier. Artificial ne	ural networks (ANI	N). Practical		
application of biosignal processing. Case studies of ANN application on epileptogenic recordings and neural recordings in general. Genetic algorithms presented.	and simulated ani	nealing is		
F7AMBSF Systemic Physiology	Z,ZK	5		
The course deals with the following themes: functional organisation of living systems, basic concepts of system approach to integrated functions of the	human organism, i	mportance		
of systems offering the use for biomedical technicians and engineers, examples of some experimental and investigative methods and modern technolo	ogies used in physi	ology and		
medicine. Lectures contain also problem solving.				
F7AMBSPMM Software for Mathematical Modeling	Z,ZK	5		
F7AMBTANP Equipment for Anesthesia and Critical Care	Z,ZK	5		
Basic concept or resuscitation. Importance of circulation, respiration, consciousness and internal environment, their control. Equipment overview, com	mon requirements	. Specific		
requirements for equipment at intensive care units (ICU) and departments of anaesthesia and critical care medicine (ACCM). Blood gases, their meas				
Modelling of the fluidic systems, parameters and properties of the fluidic models. Principles and adverse effects of artificial lung ventilation (ALV). Conv				
lung ventilation, corresponding ventilators. Equipment for anaesthesia. Anaesthetic vaporisers, their thermodynamic principles. Humidification of ventil				
monitoring and support of blood circulation. Dilution methods. Bed-side monitors. Other diagnostic and therapeutic equipment at ICU and ACCM. D	<u> </u>			
F7AMBTTZS Television, Termovision and Endoscopy Systems	Z	3		
History of television systems. Overview of television systems. Scene representation (linear transformation in 3D space, lens representation as collineation, projection). Image information				
(light, photometry, colorimetry, light sources, vision, quantitative description of image information, image spectrum). Television system. Physical limitations of resolution and correlation				
of image characteristics and system characteristics. TV system resolution. Creating video signal. Non-standard TV shooting. Black and white versus color TV system. Application of TV imaging systems in medicine. Physical quantities describing radiation and light. Physical laws for heat emitter. Principle of the operation of infrared imaging system and its diagnostic				
importance. Specifics of thermal imaging systems. Block diagram. Description of individual blocks and circuits. History of endoscopes. Types of endoscopes. Fundamentals of theory				
and practice of optical fibers. Flexible fibroscopes. Flexible video endoscopes. Light sources for flexible endoscopes. Image sensors used for endoscopes. Image processors. Monitors				
for video endoscopes. Endosonographic systems. Sterilization equipment. Automatic disinfectors for endoscopes. Standard procedures. Possible problems. Capsule imaging. Principle.				
Block arrangement. Wireless transmission and data processing. Possible complications.				
F7AMBZMR Magnetic Resonance Imaging and Electrical Impedance Tomography	Z	3		
The course deals with the following topics: nuclear magnetic resonance and electrical impedance tomography, theoretical foundations, principles of ima	ging methods and	their use in		
clinical practice with respect to the limitations of technical parameters.				

For updated information see <u>http://bilakniha.cvut.cz/en/FF.html</u> Generated: day 2025-07-27, time 17:18.