Study plan

Name of study plan: Erasmus Mundus Master Course - SpaceMaster II

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time Required credits: 120 Elective courses credits: 0 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 120 The role of the block: P

Code of the group: 2016_SPACEMASTER_2_P Name of the group: Compulsory subjects of the programme Requirement credits in the group: In this group you have to gain 120 credits Requirement courses in the group: In this group you have to complete 13 courses Credits in the group: 120 Note on the group:

	-					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7	2P+2L	Z	Р
BE3M35DIP	Diploma Thesis	Z	30	22S	L	Р
BE3M35ELS	Electronics in Space	Z,ZK	8	2P+2S	L	Р
BE3M35IDP	Individuální projekt	Z	8	0P+6S	Z	Р
BE3M35ISP	Introduction to Space Physics	Z,ZK	8	2P+2S	Z	Р
BE3M35ORO	Optic- and Radar-based Observations	Z,ZK	8	2P+2S	L	Р
BE3M35ORC	Optimal and robust control design	Z,ZK	8	2P+2C	L	Р
BE3M35SDY	Space Dynamics	Z,ZK	5	2P+2S	Z	Р
BE3M35SPP	Space Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7	4P+2C	Z	Р
BE3M35SSD	Spacecraft System	Z,ZK	8	2P+2S	Z	Р
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	Р

Characteristics of the courses of this group of Study Plan: Code=2016_SPACEMASTER_2_P Name=Compulsory subjects of the programme

	programme					
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7			
System Approach. Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Linear Systems. System Stability						
Uncertainty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of Stochastic Processes.						
BE3M35DIP	Diploma Thesis	Z	30			
Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will						
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.						
BE3M35ELS	Electronics in Space	Z,ZK	8			
BE3M35ELS BE3M35IDP	Electronics in Space Individuální projekt	Z,ZK Z	8 8			
BE3M35ELS BE3M35IDP Independent work in the	Electronics in Space Individuální projekt form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be spe	Z,ZK Z cified by branch c	8 8 lepartment or			
BE3M35ELS BE3M35IDP Independent work in the branch departments. The	Electronics in Space Individuální projekt of orm of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be spe e project will be defended within the framework of a subject.	Z,ZK Z cified by branch c	8 8 lepartment or			
BE3M35ELS BE3M35IDP Independent work in the branch departments. Th BE3M35ISP	Electronics in Space Individuální projekt form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be spe e project will be defended within the framework of a subject. Introduction to Space Physics	Z,ZK Z ccified by branch c Z,ZK	8 8 lepartment or 8			

BE3M35ORC	Optimal and robust control design	Z,ZK	8	
This advanced course of	n control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computa	tional design skill	s. Unifying idea	
of the course is that of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranteed. Minimizing H2 norm leads				
to the celebrated LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness against uncertainties in the model.				
Mu-synthesis as an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tool for robust control design.				
Standing a little bit aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the course, introduction to the topic				
of semidefinite programming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational tool for solving all the previously				
introduced tasks in optimal and robust control.				
BE3M35SDY	Space Dynamics	Z,ZK	5	
BE3M35SPP	Space Physics	Z,ZK	7	
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7	
BE3M35SSD	Spacecraft System	Z,ZK	8	
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	

List of courses of this pass:

Code	Name of the course	Completion	Credits	
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7	
System Approach.	Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Lin	ear Systems. Syste	em Stability,	
Uncertainty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of Stochastic Processes.				
BE3M35DIP	Diploma Thesis	Z	30	
Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will				
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh-	ensive final examir	nation.	
BE3M35ELS	Electronics in Space	Z,ZK	8	
BE3M35IDP	Individuální projekt	Z	8	
Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or				
	branch departments. The project will be defended within the framework of a subject.			
BE3M35ISP	Introduction to Space Physics	Z,ZK	8	
BE3M35ORC	Optimal and robust control design	Z,ZK	8	
This advanced course on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computational design skills. Unifying idea				
of the course is that of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranteed. Minimizing H2 norm leads				
to the celebrated	LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness against	t uncertainties in th	ne model.	
Mu-synthesis as	an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to	ool for robust contr	ol design.	
Standing a little bit aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the course, introduction to the topic				
of semidefinite programming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational tool for solving all the previously				
	Introduced tasks in optimal and robust control.			
BE3M35ORO	Optic- and Radar-based Observations	Z,ZK	8	
BE3M35SDY	Space Dynamics	Z,ZK	5	
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	
BE3M35SPP	Space Physics	Z,ZK	7	
BE3M35SSD	Spacecraft System	Z,ZK	8	
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7	

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-08-11, time 01:19.