Study plan

Name of study plan: Electronics and Communications - Communication Networks and Internet

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Electronics and Communications

Type of study: Follow-up master full-time

Required credits: 109
Elective courses credits: 11
Sum of credits in the plan: 120

Note on the plan:

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 79

The role of the block: P

Code of the group: 2018_MEKEP5

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 54 credits

Requirement courses in the group: In this group you have to complete 9 courses

Credits in the group: 54

Note on the group:

Specializace komunikační sítě a Internet

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE2M32PRSA	Access Networks	Z,ZK	6	2P + 2L	Z	Р
BE2M32PST	Advanced Networking Technologies Leoš Bohá Leoš Bohá Leoš Bohá (Gar.)	Z,ZK	6	2P + 2L	Z,L	Р
BE2M37DKM	Digital Communications Jan Sýkora, Pavel Puri er Pavel Puri er Jan Sýkora (Gar.)	Z,ZK	6	3P+1C	Z	Р
BE2M31DSPA	Digital Signal Processing Petr Pollák Petr Pollák Petr Pollák (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE2M37MAM	Microprocessors Stanislav Vítek Stanislav Vítek Stanislav Vítek (Gar.)	Z,ZK	6	2P+2L	Z	Р
BE2M32OSS	Optical Systems and Networks Michal Lucki Michal Lucki	Z,ZK	6	2P + 2L	L	Р
BE2MPROJ6	Project Jan Šístek, Pavel Máša, Ivan Pravda, Lubor Jirásek, Zden k Be vá , František Rund František Rund František Rund (Gar.)	Z	6	0p+6s		Р
BE2M32RTK	Telephony Communication Control Ján Ku erák, Pavel Troller, Robert Beš ák Ján Ku erák Robert Beš ák (Gar.)	Z,ZK	6	2P + 2L	L	Р
BE2M32BTSA	Wireless Technologies Zden k Be vá, Lukáš Vojt ch, Zbyn k Kocur, Pavel Mach Ján Ku erák Zden k Be vá (Gar.)	Z,ZK	6	2P + 2L	Z,L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MEKEP5 Name=Compulsory subjects of the programme

BE2M32PRSA	Access Networks	Z,ZK	6			
The course covers the area of high-speed transmission of information in the access network level, with emphasis on the use of optical transmission media and its combination with						
metallic lines (FTTx). In the practical part, students will learn the methods required for the design, modeling, measurement and analysis of transmission media, diagnostics of systems						
and whole access networks.						
BE2M32PST	Advanced Networking Technologies	Z,ZK	6			
	Advanced Networking Technologies Technologies course is designed to expand students' insights into modern network technologies and deepen their understance.	l ' l	6 ed networking			
The "Advanced Network		anding of advance				

BE2M37DKM Digital Communications

Z,ZK 6

The course provides fundamentals of digital communications theory: modulation, classical coding, channel models, and basic principles of decoding. The exposition is systematically built along the theoretical lines which allow to reveal all inner connections and principles. This allows students to develop the knowledge and use it in an active way in a design and

construction of the communication systems. The course provides a necessary fundamental background for subsequent more advanced communications theory courses.

BE2M31DSPA Digital Signal Processing

Z,ZK

6

The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing): disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at http://noel.feld.cvut.cz/v

BE2M37MAM Microprocessors

Z,ZK

ZK

The aim is to make students acquainted with the properties of microprocessor systems, make students familiar with on-chip peripherals, connect external circuit to the processor bus, and with implementation of the memory or I/O space address extension. Next, taught the students to make simple program in the assembly language, C language and combination of both. After completion of this subject student should be able to design and implement simpler microprocessor system including connection of necessary peripherals and software

BE2M32OSS Optical Systems and Networks

Z,ZK

6

The course deals with the use of optical radiation for the transmission of information. The aim is to acquaint students with the functions of important components used in an advanced optical communication systems and networks. Students will learn how to design practical optical fiber link and the network. Students will receive theoretical knowledge for the implementation of a all-optical photonic networks in the future, which will be based on a combination of wavelength multiplex with an all-optical switching.

BE2MPROJ6 Project

Ζ

6

Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The project will be defended within the framework of a subject. List of possible topics: http://www.fel.cvut.cz/en/education/semestral-projects.html

BE2M32RTK Telephony Communication Control

7 7K

The course is oriented to audio or video issues in telecommunication networks, both fixed and mobile. Students will learn principles of switching systems and their management as well as the course will provide them with an overview of signaling systems in central exchanges and networks. The focus is on digital switching systems as circuit as packet switch oriented, i.e. so-called next generation network (NGN) and voice communication in 4G networks. (VoLTE).

BE2M32BTSA Wireless Technologies

' 7K

6

The lectures give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components.

Code of the group: 2018_MEKEDIP Name of the group: Diploma Thesis

Requirement credits in the group: In this group you have to gain 25 credits

Requirement courses in the group: In this group you have to complete 1 course

Credits in the group: 25

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MEKEDIP Name=Diploma Thesis

BDIP25 Diploma Thesis Z 25

Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 30

The role of the block: PV

Code of the group: 2018_MEKEPV5

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 30 credits

Requirement courses in the group: In this group you have to complete 5 courses

Credits in the group: 30

Note on the group:

Specializace komunikační sítě a Internet

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE2M37KASA	Compression of Images and Signals Stanislav Vítek, František Rund, Václav Vencovský, Karel Fliegel Karel Fliegel Stanislav Vítek (Gar.)	Z,ZK	6	2P+2C	L	PV
B2M32DMT	Diagnostics and Measurement in Telecommunications Zbyn k Kocur, Ji í Vodrážka Petr Jareš Ji í Vodrážka (Gar.)	Z,ZK	6	2P+2L	L	PV
B2M32DSAA	Network Application Diagnostics Radek Ma ik Radek Ma ik Radek Ma ik (Gar.)	Z,ZK	6	2P + 2C	Z	PV
BE2M32DSVA	Distributed Computing Peter Macejko Peter Macejko Peter Macejko (Gar.)	Z,ZK	6	2P + 2C	Z	PV

BE2M32IBEA	Information Security Peter Macejko, Tomáš Van k Petr Hampl Robert Bešák (Gar.)	Z,ZK	6	2P + 2C	L	PV
BE2M32MKSA	Mobile Networks Zden k Be vá, Robert Bešák, Pavel Mach Pavel Mach Zden k Be vá (Gar.)	Z,ZK	6	2P + 2L	Z	PV
BE2M32THOA	Queueing Theory Petr Hampl Petr Hampl (Gar.)	Z,ZK	6	3P + 1L	Z	PV
BE2M31ZRE	Speech Processing Petr Pollák Petr Pollák Petr Pollák (Gar.)	Z,ZK	6	2P+2C	L	PV

Characteristics of the courses of this group of Study Plan: Code=2018_MEKEPV5 Name=Compulsory subjects of the programme

Compression of Images and Signals

The subject deals with compression methods and techniques. Main goal is to introduce basic concepts of lossless and lossy compression of audiovisual information (entropy, redundancy and irrelevancy). Within the laboratory exercises students will work with implementations of particular algorithms, including objective and subjective methods of quality evaluation.

B2M32DMT Diagnostics and Measurement in Telecommunications

The subject builds on knowledge of basic types of interfaces used in telecommunications (from classic, via a packet-oriented and expected future generation system). Explains the importance of key parameters, presents tools for the monitoring and measurement methodology and fault diagnosis. Students verify acquired knowledge to practical tasks in the laboratory to real systems and advanced measurement techniques

B2M32DSAA **Network Application Diagnostics**

The first part of the course deals with complex network structures, their characteristics identification, with recognition of both structural static and dynamic patterns, and anomaly detection. The second part of the course is focused on specification methods of static and dynamic behavior and their verification. The use of the methods is demonstrated on examples dealing with network application issues. The special treatment is dedicated not only to network and cloud applications, but also to posibilities of diagnostic process automation. The students gain sufficient skills in seminars where they solve practical problems in digital network domain.

Distributed Computing BE2M32DSVA

Z,ZK

6

The course is focused on technologies that support distributed computing: on mechanisms ensuring reliable, efficient and secure connection of application processes, programming interfaces of communication channels and up-to-date middleware technologies. A significant part of lectures is dedicated to distributed algorithms that assure causality, exclusive access, deadlock detection/avoidance, fault-tolerance, mobile computing, and security.

BE2M32IBEA Information Security Z,ZK

The Information Security course provides a complete source of information on the field of security of information systems and information technologies. The most of information in today's world is created, transferred, stored in electronic form so information security is very important part of it. On successful completion of this course, students should be able to define the cryptographic primitives symmetric / asymmetric encryption, digital signatures, cryptographic hash function, and message authentication codes. They should be able to explain the security features offered by the latest versions of the most important security protocols operating on the TCP/IP stack (IPsec, TLS, SSH, PGP) and describe known attacks against these security protocols.

BE2M32MKSA Mobile Networks Z.ZK

The lectures introduce principles and functionalities of mobile networks with special focus on currently deployed technologies and future mobile networks. Furthermore, architecture and fundamental principles of GSM, UMTS, LTE/LTE-A, and 5G will be explained. Then, selected key technologies for future mobile networks (6G) will be explained.

BE2M32THOA Queueing Theory

The aim of the course is to present an overview of dimensioning of telecommunication networks on the basis of results of the queuing theory (QT) and to introduce possibilities of simulation and modelling of networks, both from the point of view of grade of service (GoS) and quality of service (QoS). Results of the QT are applied on different service systems and telecommunication networks being currently operated and developed. Theoretical knowledge about models of service systems can be applied on dimensioning of different service systems in real life - not only on the telecommunications one.

Speech Processing

The subject is devoted to basis of speech processing addressed to students of master program. Discussed speech technology is currently applied in many systems in different fields (e.g. information dialogue systems, voice controlled devices, dictation systems or transcription of audio-video recordings, support for language teaching, etc.). Students will learn basic algorithms for speech analysis (spectral analysis, LPC, cepstral analysis, pitch, formants, etc.), principles of speech recognition (GMM-HMM, ANN-HMM systems, small and large vocabulary recognizers), speaker recognition (based on VQ and GMM), speech synthesis or speech enhancement. Further information can be found at Moodle FEL.

Name of the block: Elective courses Minimal number of credits of the block: 0

The role of the block: V

Code of the group: 2018_MEKEVOL Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group:

Credits in the group: 0

Note on the group: ~Student can choose arbitrary subject of themagister's program (EEM - Electrical Engineering, Power Engineering and Management, EK - Electronics and Communications, KYR - Cybernetics and Robotics, OI - Open Informatics, OES - Open Electronics Systems) which is not part of his curriculum. Student can choose with consideration of recommendation of the branch guarantee. You can find a selection of optional courses organized by the departments on the web site

http://www.fel.cvut.cz/cz/education/volitelne-predmety.html

Code of the group: 2018 MEKEH

Name of the group: Humanities subjects

Requirement credits in the group:

Requirement courses in the group: Credits in the group: 0

Note on the group:

Code

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
AE0M32KMP	Communications and Media Law	Z,ZK	4	2P + 2C	Z,L	V
BE0M16HSD	History of economy and social studies Marcela Efmertová Marcela Efmertová (Gar.)	Z,ZK	4	2P+2S	Z,L	V
BE0M16HT2	History of science and technology 2 Marcela Efmertová	Z,ZK	4	2P+2S	L	V
BE0M16FI2	Philosophy II	Z,ZK	4	2P+2S	L	V
BE0M16MPS	Psychology	Z,ZK	4	2P+2S	L	V
BE0M16TE1	Theology	Z,ZK	4	2P+2S	L	V

Characteristics of	f the courses of this group of Study Plan: Code=2018_MEKEH Name=Humanities subjects	5	
AE0M32KMP	Communications and Media Law	Z,ZK	4
A complex course dec	cated to interdisciplinary problems - the legal aspects of electronic communications (information and communications syste	ms), as well as media	from the
viewpoint of European	and national law. It analyses the areas of informatics, electronic communications, information society services, copyright and	l general intellectual p	roperty rights
the protection of ident	y, introduction to software law and the Internet as a global communication and information system.		
BE0M16HSD	History of economy and social studies	Z,ZK	4
This subject deals with	the history of the European and Czech society in the 19th - 21th centuries. It follows the forming of the European and Czec	h political representat	ion, its aims
and achieved results a	s well as the social, economical, technical and cultural development and coexistence of the various ethnical groups.		
BE0M16HT2	History of science and technology 2	Z,ZK	4
This subject traces his	orical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate	students' interest in the	ne history and
traditions of the subject	t, while highlighting the developments in technical education and professional organizations, the process of shaping scientif	c life and the influenc	e of technical
engineers			
BE0M16FI2			
	Philosophy II	Z,ZK	4
	Philosophy II on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology.	Z,ZK	4
The course is oriented		Z,ZK	4
	on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology.	, ,	4 4 4
The course is oriented BE0M16MPS BE0M16TE1	on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology. Psychology	Z,ZK Z,ZK	4

List of courses of this pass:

Name of the course

Completion Credits

			1
AE0M32KMP	Communications and Media Law	Z,ZK	4
A complex cours	e dedicated to interdisciplinary problems - the legal aspects of electronic communications (information and communications systems), as well as media	a from the
viewpoint of Europe	ean and national law. It analyses the areas of informatics, electronic communications, information society services, copyright and gene	eral intellectual pro	perty rights,
	the protection of identity, introduction to software law and the Internet as a global communication and information system.		
B2M32DMT	Diagnostics and Measurement in Telecommunications	Z,ZK	6
The subject builds	s on knowledge of basic types of interfaces used in telecommunications (from classic, via a packet-oriented and expected future gen	eration system). Ex	xplains the
importance of ke	ey parameters, presents tools for the monitoring and measurement methodology and fault diagnosis. Students verify acquired knowle	dge to practical tas	sks in the
	laboratory to real systems and advanced measurement techniques.		
B2M32DSAA	Network Application Diagnostics	Z,ZK	6
The first part of t	he course deals with complex network structures, their characteristics identification, with recognition of both structural static and dyn	amic patterns, and	anomaly
detection. The seco	nd part of the course is focused on specification methods of static and dynamic behavior and their verification. The use of the methods	is demonstrated of	on examples
dealing with netwo	ork application issues. The special treatment is dedicated not only to network and cloud applications, but also to posibilities of diagno	stic process auton	nation. The
	students gain sufficient skills in seminars where they solve practical problems in digital network domain.		
BDIP25	Diploma Thesis	Z	25
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or I	ner branch of study	, which will
be specified b	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examir	nation.
BE0M16FI2	Philosophy II	Z,ZK	4
'	The course is oriented on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology.		1
BE0M16HSD	History of economy and social studies	Z,ZK	4
This subject deals	with the history of the European and Czech society in the 19th - 21th centuries. It follows the forming of the European and Czech po	litical representation	on, its aims
	and achieved results as well as the social, economical, technical and cultural development and coexistence of the various ethnical	groups.	
BE0M16HT2	History of science and technology 2	Z,ZK	4
This subject traces	historical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate stude	ents' interest in the	history and
traditions of the sul	bject, while highlighting the developments in technical education and professional organizations, the process of shaping scientific life	and the influence	of technical
	engineers		

BE0M16MPS Psychology Z,ZK BE0M16TE1 Theology Z,ZK This subject provides to students the basic orientation in christian theology and requires no special previous education. After short philosophic lecture the basic theologic disciplines are gone through. The subject is determined not only to believer students who want to know the reliable theologic grounding but also above all to ones who want to get know Christianity - religion from which graws our civilization up. BE2M31DSPA Digital Signal Processing The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing): disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at http://noel.feld.cvut.cz/vyu/be2m31dspa BE2M31ZRE Speech Processing Z,ZK The subject is devoted to basis of speech processing addressed to students of master program. Discussed speech technology is currently applied in many systems in different fields (e.g. information dialogue systems, voice controlled devices, dictation systems or transcription of audio-video recordings, support for language teaching, etc.). Students will learn basic algorithms for speech analysis (spectral analysis, LPC, cepstral analysis, pitch, formants, etc.), principles of speech recognition (GMM-HMM, ANN-HMM systems, small and large vocabulary recognizers), speaker recognition (based on VQ and GMM), speech synthesis or speech enhancement. Further information can be found at http://noel.feld.cvut.cz/vyu/be2m31zre. Pro zapsané studenty jsou detailní informace na výukovém portálu Moodle FEL. BE2M32BTSA Wireless Technologies Z,ZK 6 The lectures give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. Z,ZK BE2M32DSVA **Distributed Computing** 6 The course is focused on technologies that support distributed computing: on mechanisms ensuring reliable, efficient and secure connection of application processes, programming interfaces of communication channels and up-to-date middleware technologies. A significant part of lectures is dedicated to distributed algorithms that assure causality, exclusive access, deadlock detection/avoidance, fault-tolerance, mobile computing, and security. BE2M32IBEA Information Security Z,ZK The Information Security course provides a complete source of information on the field of security of information systems and information technologies. The most of information in today's world is created, transferred, stored in electronic form so information security is very important part of it. On successful completion of this course, students should be able to define the cryptographic primitives symmetric / asymmetric encryption, digital signatures, cryptographic hash function, and message authentication codes. They should be able to explain the security features offered by the latest versions of the most important security protocols operating on the TCP/IP stack (IPsec, TLS, SSH, PGP) and describe known attacks against these security protocols. BE2M32MKSA Mobile Networks 7.7K 6 The lectures introduce principles and functionalities of mobile networks with special focus on currently deployed technologies and future mobile networks. Furthermore, architecture and fundamental principles of GSM, UMTS, LTE/LTE-A, and 5G will be explained. Then, selected key technologies for future mobile networks (6G) will be explained. BE2M32OSS Optical Systems and Networks Z,ZK 6 The course deals with the use of optical radiation for the transmission of information. The aim is to acquaint students with the functions of important components used in an advanced optical communication systems and networks. Students will learn how to design practical optical fiber link and the network. Students will receive theoretical knowledge for the implementation of a all-optical photonic networks in the future, which will be based on a combination of wavelength multiplex with an all-optical switching BE2M32PRSA Access Networks The course covers the area of high-speed transmission of information in the access network level, with emphasis on the use of optical transmission media and its combination with metallic lines (FTTx). In the practical part, students will learn the methods required for the design, modeling, measurement and analysis of transmission media, diagnostics of systems and whole access networks. BE2M32PST Advanced Networking Technologies Z,ZK 6 The "Advanced Network Technologies" course is designed to expand students' insights into modern network technologies and deepen their understanding of advanced networking protocols within data networks. Students will engage in practical exercises involving Internet unicast routing, multicast routing, IPv6, and MPLS network design, using network simulation tools such as PacketTracer and EveNG. Given the course's emphasis on remote lab activities, instruction will predominantly be delivered online. BE2M32RTK **Telephony Communication Control** The course is oriented to audio or video issues in telecommunication networks, both fixed and mobile. Students will learn principles of switching systems and their management as well as the course will provide them with an overview of signaling systems in central exchanges and networks. The focus is on digital switching systems as circuit as packet switch oriented, i.e. so-called next generation network (NGN) and voice communication in 4G networks. (VoLTE). BE2M32THOA Queueing Theory Z,ZK The aim of the course is to present an overview of dimensioning of telecommunication networks on the basis of results of the queuing theory (QT) and to introduce possibilities of simulation and modelling of networks, both from the point of view of grade of service (GoS) and quality of service (QoS). Results of the QT are applied on different service systems and telecommunication networks being currently operated and developed. Theoretical knowledge about models of service systems can be applied on dimensioning of different service systems in real life - not only on the telecommunications one. BE2M37DKM **Digital Communications** The course provides fundamentals of digital communications theory: modulation, classical coding, channel models, and basic principles of decoding. The exposition is systematically built along the theoretical lines which allow to reveal all inner connections and principles. This allows students to develop the knowledge and use it in an active way in a design and construction of the communication systems. The course provides a necessary fundamental background for subsequent more advanced communications theory courses. BE2M37KASA Compression of Images and Signals The subject deals with compression methods and techniques. Main goal is to introduce basic concepts of lossless and lossy compresion of audiovisual information (entropy, redundancy and irrelevancy). Within the laboratory exercises students will work with implementations of particular algorithms, including objective and subjective methods of quality evaluation. BE2M37MAM Microprocessors The aim is to make students acquainted with the properties of microprocessor systems, make students familiar with on-chip peripherals, connect external circuit to the processor bus, and with implementation of the memory or I/O space address extension. Next, taught the students to make simple program in the assembly language, C language and combination of both. After completion of this subject student should be able to design and implement simpler microprocessor system including connection of necessary peripherals and software design BE2MPROJ6 Project Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The project will be defended within the framework of a subject. List of possible topics: http://www.fel.cvut.cz/en/education/semestral-projects.html

For updated information see http://bilakniha.cvut.cz/en/f3.html

Generated: day 2025-11-14, time 08:52.