Study plan

Name of study plan: Electronics and Communications - Radio Systems

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Electronics and Communications

Type of study: Follow-up master full-time

Required credits: 109
Elective courses credits: 11
Sum of credits in the plan: 120

Note on the plan:

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 79

The role of the block: P

Code of the group: 2018_MEKEP7

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 54 credits

Requirement courses in the group: In this group you have to complete 9 courses

Credits in the group: 54

Note on the group:

Specializace radiové systémy

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE2M17ANT	Antennas Pavel Hazdra, Miloš Mazánek, Jan Kra ek Jan Kra ek Miloš Mazánek (Gar.)	Z,ZK	6	2P+2L	L	Р
BE2M37ART	Architecture of Radio Receivers and Transmitters Josef Dobeš, Pavel Ková Karel Ulovec Pavel Ková (Gar.)	Z,ZK	6	2P+2L	Z	Р
BE2M37DKM	Digital Communications Pavel Puri er, Jan Sýkora Pavel Puri er Jan Sýkora (Gar.)	Z,ZK	6	3P+1C	Z	Р
BE2M31DSPA	Digital Signal Processing Petr Pollák Petr Pollák Petr Pollák (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE2M37MAM	Microprocessors Stanislav Vítek Stanislav Vítek (Gar.)	Z,ZK	6	2P+2L	Z	Р
BE2M17MIOA	Microwave Circuits P emysl Hudec, Karel Hoffmann P emysl Hudec Milan Polívka (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE2MPROJ6	Project Jan Šístek, Pavel Máša, Ivan Pravda, Lubor Jirásek, Zden k Be vá, František Rund František Rund František Rund (Gar.)	Z	6	0p+6s		Р
BE2M17SBS	Wave Propagation for Wireless Links Pavel Pecha Pavel Pecha Pavel Pecha (Gar.)	Z,ZK	6	2P+2C	L	Р
BE2M32BTSA	Wireless Technologies Zden k Be vá , Lukáš Vojt ch, Zbyn k Kocur, Pavel Mach Ján Ku erák Zden k Be vá (Gar.)	Z,ZK	6	2P + 2L	Z,L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MEKEP7 Name=Compulsory subjects of the programme

BE2M17ANT	Antennas	Z,ZK	6
Student will get strong	knowledge about theory of electromagnetic field radiation and basic principles of antenna design. Methods of analysis are de	monstrated on va	rious types of
antennas and their arra	ays. Seminars are both theoretical (analytical and numerical calculation using MATLAB and EM simulators CST) and practical	(measurement of	antenna
parameters).			
BE2M37ART	Architecture of Radio Receivers and Transmitters	Z,ZK	6

The subject deals with the architecture of the radio receivers and transmitters and software radio. The student's familiarize with the design and the modern methods of optimization of the radio receivers and transmitters' functional blocks and with the phenomena related with frequency conversion, noise sources and noise analyses. They learn conceptual radio receiver and transmitter design, including the level and frequency plans and their optimization. The course also deals with the digital signal processing blocks of the modern radio receivers and their practical implementation.

BE2M37DKM Digital Communications Z,ZK 6

The course provides fundamentals of digital communications theory: modulation, classical coding, channel models, and basic principles of decoding. The exposition is systematically built along the theoretical lines which allow to reveal all inner connections and principles. This allows students to develop the knowledge and use it in an active way in a design and construction of the communication systems. The course provides a necessary fundamental background for subsequent more advanced communications theory courses.

BE2M31DSPA Digital Signal Processing

The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing); disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at <a

BE2M37MAM Microprocessors Z,ZK

The aim is to make students acquainted with the properties of microprocessor systems, make students familiar with on-chip peripherals, connect external circuit to the processor bus, and with implementation of the memory or I/O space address extension. Next, taught the students to make simple program in the assembly language, C language and combination of both. After completion of this subject student should be able to design and implement simpler microprocessor system including connection of necessary peripherals and software

BE2M17MIOA Microwave Circuits Z,ZK Subject is focused on the design of planar passive and active microwave circuits BE2MPROJ6 Project 6

Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The project will be defended within the framework of a subject. List of possible topics: http://www.fel.cvut.cz/en/education/semestral-projects.html

Wave Propagation for Wireless Links BE2M17SBS

The aim of the course is to study the wireless transmission channel in real environments focusing on wave propagation for planning of terrestrial and satellite wireless links. The syllabus includes both deeper theoretical foundations of radio wave propagation in the atmosphere as well as ITU-R design procedures for terrestrial and satellite, fixed and mobile communications in various frequency bands

BE2M32BTSA Wireless Technologies

The lectures give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components.

Code of the group: 2018_MEKEDIP Name of the group: Diploma Thesis

Requirement credits in the group: In this group you have to gain 25 credits

Requirement courses in the group: In this group you have to complete 1 course

Credits in the group: 25

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MEKEDIP Name=Diploma Thesis

BDIP25 Diploma Thesis

Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 30

The role of the block: PV

Code of the group: 2018_MEKEPV7

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 30 credits

Requirement courses in the group: In this group you have to complete 5 courses

Credits in the group: 30

Note on the group:

Specializace radiové systémy

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE2M17CADA	CAD in HF Technique Zbyn k Škvor Zbyn k Škvor Zbyn k Škvor (Gar.)	Z,ZK	6	2P+2C	Г	PV
BE2M37DTRA	Digital Audio and Video Broadcasting Karel Ulovec	Z,ZK	6	2P+2L	Z	PV
BE2M17MIMA	Microwave Measurements P emysl Hudec, Karel Hoffmann Viktor Adler P emysl Hudec (Gar.)	Z,ZK	6	2P+2L	L	PV
BE2M32MKSA	Mobile Networks Zden k Be vá, Pavel Mach, Robert Beš ák Pavel Mach Zden k Be vá (Gar.)	Z,ZK	6	2P + 2L	Z	PV
BE2M37RNVA	Radio Navigation Pavel Ková Pavel Ková Pavel Ková (Gar.)	Z,ZK	6	2P+2L	Z	PV

BE2M34NSV	VLSI System Design Pavel Hazdra Pavel Hazdra (Gar.)	Z,ZK	6	2P+2L	Z	PV
-----------	---	------	---	-------	---	----

Characteristics of the courses of this group of Study Plan: Code=2018_MEKEPV7 Name=Compulsory subjects of the programme

CAD in HF Technique Z,ZK Introduction into principles and techniques used in modern microwave circuit design. BE2M37DTRA Digital Audio and Video Broadcasting Z,ZK

The subject makes students familiar with topics related to video and audio transmission. Described are methods of data stream creation, methods of source and channel coding, error correction principles and modulation formats. Attention is paid to transmission systems standards with regard to transmission channel properties. The subject also deals with multimedia data services and with measurement in transmission systems.

BE2M17MIMA Microwave Measurements Z,ZK

Fast development of wireless radio data communications (both mobile and stationary) also results in requirements for measurement of numerous related electrical parameters in frequency band ranging from hundreds of MHz to tens of GHz. The "Microwave measurements" subject brings description of all important measurement instruments and measurement methods used in this field. Instructions devoted to measurement devices also cover detailed inner structures, principles of operation, common measurement setups and optimum setting. Even relatively complex measurement instruments and setups are discussed, for example those used for measurement of noise and non-linear parameters. Exercises are focused on practical measurements commonly performed in the wireless communication field. Besides modern measurement instruments, students also learn a number of typical RF and microwave components, circuits, subsystems and digitally modulated signals.

BE2M32MKSA Mobile Networks

The lectures introduce principles and functionalities of mobile networks with special focus on currently deployed technologies and future mobile networks. Furthermore, architecture and fundamental principles of GSM, UMTS, LTE/LTE-A, and 5G will be explained. Then, selected key technologies for future mobile networks (6G) will be explained.

BE2M37RNVA Radio Navigation

6

The course introduces students to the terrestrial and satellite radio navigation and radar systems. Students get knowledge of the radio navigation systems, and of the structure of navigation and radar signals and methods of their processing. They become familiar with coordinate systems, fundamentals of celestial mechanics, and methods of position estimation. Students get knowledge of practical applications and the integration of navigation systems.

BE2M34NSV VLSI System Design

Introduction to basic building blocks, architecture and design methodologies of advanced VLSI systems. Structure and design of digital and analogue integrated circuit subsystems. Integrated system description and synthesis using cell libraries and IP cores. Synchronization, power consumption and parasitics reduction issues. Testing and reliability of integrated systems. In seminars and labs, the hardware description language VHDL will be explained and used for practical design, synthesis and testing of a system on chip.

Name of the block: Elective courses Minimal number of credits of the block: 0

The role of the block: V

Code of the group: 2018_MEKEVOL Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group:

Credits in the group: 0

Note on the group: ~Student can choose arbitrary subject of themagister's program (EEM - Electrical Engineering, Power Engineering and Management, EK - Electronics and Communications, KYR - Cybernetics and Robotics, OI - Open Informatics, OES - Open Electronics Systems) which is not part of his curriculum. Student can choose with consideration of recommendation of the branch guarantee. You can find a selection of optional courses organized by the departments on the web site

http://www.fel.cvut.cz/cz/education/volitelne-predmety.html

Code of the group: 2018_MEKEH

Name of the group: Humanities subjects

Requirement credits in the group: Requirement courses in the group:

Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
AE0M32KMP	Communications and Media Law	Z,ZK	4	2P + 2C	Z,L	V
BE0M16HSD	History of economy and social studies Marcela Efmertová Marcela Efmertová (Gar.)	Z,ZK	4	2P+2S	Z,L	V
BE0M16HT2	History of science and technology 2 Marcela Efmertová	Z,ZK	4	2P+2S	L	V
BE0M16FI2	Philosophy II	Z,ZK	4	2P+2S	L	V
BE0M16MPS	Psychology	Z,ZK	4	2P+2S	L	V
BE0M16TE1	Theology	Z,ZK	4	2P+2S	L	V

Characteristics of the courses of this group of Study Plan: Code=2018_MEKEH Name=Humanities subjects

AE0M32KMP	Communications and Media Law	Z,ZK	4
viewpoint of European	cated to interdisciplinary problems - the legal aspects of electronic communications (information and communications system and national law. It analyses the areas of informatics, electronic communications, information society services, copyright and g y, introduction to software law and the Internet as a global communication and information system.	**	
BE0M16HSD	History of economy and social studies	Z,ZK	4
•	the history of the European and Czech society in the 19th - 21th centuries. It follows the forming of the European and Czech swell as the social, economical, technical and cultural development and coexistence of the various ethnical groups.	political representa	ation, its aims
BE0M16HT2	History of science and technology 2	Z,ZK	4
This subject traces his	orical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate s	tudents' interest in	the history and
traditions of the subject	, while highlighting the developments in technical education and professional organizations, the process of shaping scientific	life and the influen	ce of technical
engineers			
DEOMACEIO			
BE0M16FI2	Philosophy II	Z,ZK	4
	Philosophy II on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology.	Z,ZK	4
	, , ,	Z,ZK	4
The course is oriented	on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology.	, ,	<u>'</u>
The course is oriented BEOM16MPS BEOM16TE1 This subject provides t	on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology. Psychology	Z,ZK Z,ZK re the basic theolog	4 4 gic disciplines

List of courses of this pass:

Code	Name of the course	Completion	Credits
AE0M32KMP	Communications and Media Law	Z,ZK	4
A complex cours	e dedicated to interdisciplinary problems - the legal aspects of electronic communications (information and communications systems	s), as well as media	from the
viewpoint of Europ	ean and national law. It analyses the areas of informatics, electronic communications, information society services, copyright and gen	eral intellectual pro	perty rights
	the protection of identity, introduction to software law and the Internet as a global communication and information system		
BDIP25	Diploma Thesis	Z	25
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or	her branch of study	, which will
be specified	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compre	ensive final examin	nation.
BE0M16FI2	Philosophy II	Z,ZK	4
	The course is oriented on the transdisciplinar aspects of philosophy, informatics, physics, mathematics and biology.	,	!
BE0M16HSD	History of economy and social studies	Z,ZK	4
This subject deals	with the history of the European and Czech society in the 19th - 21th centuries. It follows the forming of the European and Czech po	olitical representation	on, its aims
	and achieved results as well as the social, economical, technical and cultural development and coexistence of the various ethnical	l groups.	
BE0M16HT2	History of science and technology 2	Z,ZK	4
This subject traces	historical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate stud		history and
traditions of the su	bject, while highlighting the developments in technical education and professional organizations, the process of shaping scientific life	and the influence	of technica
	engineers		
BE0M16MPS	Psychology	Z,ZK	4
BE0M16TE1	Theology	Z,ZK	4
	des to students the basic orientation in christian theology and requires no special previous education. After short philosophic lecture	1 '	disciplines
BE2M17ANT	- religion from which graws our civilization up. Antennas	Z.ZK	6
	rong knowledge about theory of electromagnetic field radiation and basic principles of antenna design. Methods of analysis are dem	1 '	-
_	heir arrays. Seminars are both theoretical (analytical and numerical calculation using MATLAB and EM simulators CST) and practica		
	parameters).		
BE2M17CADA	CAD in HF Technique	Z,ZK	6
	Introduction into principles and techniques used in modern microwave circuit design.	_,	
BE2M17MIMA	Microwave Measurements	Z,ZK	6
	nt of wireless radio data communications (both mobile and stationary) also results in requirements for measurement of numerous rela		-
-	nging from hundreds of MHz to tens of GHz. The "Microwave measurements" subject brings description of all important measurement	•	
methods used in th	is field. Instructions devoted to measurement devices also cover detailed inner structures, principles of operation, common measureme	ent setups and optin	num setting
Even relatively cor	nplex measurement instruments and setups are discussed, for example those used for measurement of noise and non-linear parame	eters. Exercises are	focused or
practical measuren	nents commonly performed in the wireless communication field. Besides modern measurement instruments, students also learn a numb	er of typical RF and	d microwav
	components, circuits, subsystems and digitally modulated signals.		
BE2M17MIOA	Microwave Circuits	Z,ZK	6
	Subject is focused on the design of planar passive and active microwave circuits.		'
BE2M17SBS	Wave Propagation for Wireless Links	Z,ZK	6
	rse is to study the wireless transmission channel in real environments focusing on wave propagation for planning of terrestrial and sate	1 '	The syllabu
	er theoretical foundations of radio wave propagation in the atmosphere as well as ITU-R design procedures for terrestrial and satellite, fix		-
	in various frequency bands.		
BE2M31DSPA	Digital Signal Processing	Z,ZK	6
	overview about basic methods of digital signal processing and their applications (examples from speech and biological signal proces		_
	barrataristics in time and fraguency deposits. For view transform for DET computation, introduction to digital filter deci-	•	•

systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and

frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at http://noel.feld.cvut.cz/vyu/be2m31dspa ... BE2M32BTSA Wireless Technologies Z.ZK 6 The lectures give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. BE2M32MKSA Mobile Networks 7 7K The lectures introduce principles and functionalities of mobile networks with special focus on currently deployed technologies and future mobile networks. Furthermore, architecture and fundamental principles of GSM, UMTS, LTE/LTE-A, and 5G will be explained. Then, selected key technologies for future mobile networks (6G) will be explained. VLSI System Design Introduction to basic building blocks, architecture and design methodologies of advanced VLSI systems. Structure and design of digital and analogue integrated circuit subsystems. Integrated system description and synthesis using cell libraries and IP cores. Synchronization, power consumption and parasitics reduction issues. Testing and reliability of integrated systems. In seminars and labs, the hardware description language VHDL will be explained and used for practical design, synthesis and testing of a system on chip. BE2M37ART Architecture of Radio Receivers and Transmitters Z.ZK The subject deals with the architecture of the radio receivers and transmitters and software radio. The student s familiarize with the design and the modern methods of optimization of the radio receivers and transmitters' functional blocks and with the phenomena related with frequency conversion, noise sources and noise analyses. They learn conceptual radio receiver and transmitter design, including the level and frequency plans and their optimization. The course also deals with the digital signal processing blocks of the modern radio receivers and their practical implementation. BE2M37DKM **Digital Communications** The course provides fundamentals of digital communications theory: modulation, classical coding, channel models, and basic principles of decoding. The exposition is systematically built along the theoretical lines which allow to reveal all inner connections and principles. This allows students to develop the knowledge and use it in an active way in a design and construction of the communication systems. The course provides a necessary fundamental background for subsequent more advanced communications theory courses. Digital Audio and Video Broadcasting The subject makes students familiar with topics related to video and audio transmission. Described are methods of data stream creation, methods of source and channel coding, error correction principles and modulation formats. Attention is paid to transmission systems standards with regard to transmission channel properties. The subject also deals with multimedia data services and with measurement in transmission systems. BE2M37MAM Microprocessors The aim is to make students acquainted with the properties of microprocessor systems, make students familiar with on-chip peripherals, connect external circuit to the processor bus, and with implementation of the memory or I/O space address extension. Next, taught the students to make simple program in the assembly language, C language and combination of both. After completion of this subject student should be able to design and implement simpler microprocessor system including connection of necessary peripherals and software design. Radio Navigation BE2M37RNVA The course introduces students to the terrestrial and satellite radio navigation and radar systems. Students get knowledge of the radio navigation systems, and of the structure of navigation and radar signals and methods of their processing. They become familiar with coordinate systems, fundamentals of celestial mechanics, and methods of position estimation. Students get knowledge of practical applications and the integration of navigation systems. BE2MPROJ6 Project

Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The project will be defended within the framework of a subject. List of possible topics: http://www.fel.cvut.cz/en/education/semestral-projects.html

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-08-09, time 10:23.