Study plan

Name of study plan: Open Informatics - Artificial Intelligence

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Required credits: 85 Elective courses credits: 35 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 49 The role of the block: P

Code of the group: 2018_MOIEP Name of the group: Compulsory subjects of the programme Requirement credits in the group: In this group you have to gain 24 credits Requirement courses in the group: In this group you have to complete 4 courses Credits in the group: 24 Note on the group:

Note on the gi	loup.					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Р
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	KZ	6		Z,L	Р
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEP Name=Compulsory subjects of the programme

BE4M33PAL	Advanced Algorithms	Z,ZK	6		
Basic graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - pattern matching.					
BE4M35KO	Combinatorial Optimization	Z,ZK	6		
The goal is to show the	problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the ter	m operations rese	arch). Following		
the courses on linear alg	gebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmi	ng, heuristics, ap	proximation		
algorithms and state spa	ace search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, p	planning of humar	resources,		
scheduling in production	Ines, message routing, scheduling in parallel computers.				
BE4MSVP	Software or Research Project	KZ	6		
Independent work on a	problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approach	ing diploma thesis	and the project		
advisor is the diploma th	esis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester	and not underesti	mating its timely		
selection. The topic of th	e project should be relevant to the major branch of the study. The software and research project course must have a clearly c	lefined output, suc	ch as a technical		
report or a computer pro	report or a computer program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one subject of this type An exception				
may be granted by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different topic and is led by another					
supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course,					
then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be					
found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk. cvut.cz/cs/study/predmetprojekt.					
BE4M01TAL	Theory of Algorithms	Z,ZK	6		
The course brings theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems, secondly on the correctness					
of algorithms. Further it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of them investigated. Probabilistic					
algorithms are studied and the classes RP and ZZP introduced.					

Code of the group: 2018_MOIEDIP Name of the group: Diploma Thesis

Requirement credits in the group: In this group you have to gain 25 credits Requirement courses in the group: In this group you have to complete 1 course Credits in the group: 25 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEDIP Name=Diploma Thesis

BDIP25Diploma ThesisZ25Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive tinal examination.Z25

Name of the block: Compulsory courses of the specialization Minimal number of credits of the block: 36 The role of the block: PO

Code of the group: 2018_MOIEPO7

Name of the group: Compulsory subjects of the branch Requirement credits in the group: In this group you have to gain 36 credits Requirement courses in the group: In this group you have to complete 6 courses

Credits in the group: 36

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M36UIR	Artificial Intelligence in Robotics Miloš Prágr, Jan Faigl Jan Faigl Jan Faigl (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M36MAS	Computational Game Theory Tomáš Kroupa, Michal Jakob, Ond ej Kubí ek, Tomáš Votroubek Tomáš Kroupa Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	z	PO
BE4M36LUP	Logical Reasoning and Programming Ond ej Kuželka, Karel Chvalovský Filip Železný Filip Železný (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M36PUI	Planning for Artificial Intelligence Rostislav Hor ík Rostislav Hor ík Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	L	PO
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M36SMU	Symbolic Machine Learning Ond ej Kuželka, Filip Železný, Gustav Šír Ond ej Kuželka Ond ej Kuželka (Gar.)	Z,ZK	6	2P+2C	L	PO

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEPO7 Name=Compulsory subjects of the branch

BE4M36UIR Artificial Intelligence in Robotics Z,ZK ิค The course aims to acquaint students with the use of planning approaches and decision-making techniques of artificial intelligence for solving problems arising in autonomous robotic systems. Students in the course are employing knowledge of planning algorithms, game theory, and solving optimization problems in selected application scenarios of mobile robotics. Students first learn architectures of autonomous systems based on reactive and behavioral models of autonomous systems. The considered application scenarios and robotic problems include path planning, persistent environmental monitoring, robotic exploration of unknown environments, online real-time decision-making, deconfliction in autonomous systems, and solutions of antagonistic conflicts. In laboratory exercises, students practice their problem formulations of robotic challenges and practical solutions in a realistic robotic simulator or consumer mobile robots. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor. BE4M36MAS **Computational Game Theory** Z,ZK 6 This course is designed to introduce students to the fundamental concepts and applications of game theory, a powerful tool used to model strategic interactions among individuals, organizations, or countries. Throughout the course, we will delve into various aspects of game theory and explore its wide-ranging applications in diverse fields, including machine learning and AI. BE4M36LUP Logical Reasoning and Programming Z,ZK 6 The course's aim is to explain selected significant methods of computational logic. These include algorithms for propositional satisfiability checking, logical programming in Prolog, and first-order theorem proving and model-finding. Time permitting, we will also discuss some complexity and decidability issues pertaining to the said methods. BE4M36PUI Planning for Artificial Intelligence Z,ZK 6 The course covers the problematic of automated planning in artificial intelligence and focuses especially on domain independent models of planning problems: planning as a search in the space of states (state-space planning), in the space of plans (plan-space planning), heuristic planning, planning in graph representation of planning problems (graph-plan) or hierarchical planning. The students will also learn about the problematic of planning under uncertainty and the planning model as a decision-making in MDP and POMDP. BE4M33SSU Statistical Machine Learning 7.7K The aim of statistical machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some prior knowledge about the task.

This includes typical tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning concepts such as risk minimisation, maximum likelihood estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification and regression and to show how they can be learned by those concepts.

BE4M36SMU	Symbolic Machine	Learning
-----------	------------------	----------

Z.ZK 6 This course consists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its environment, also known as reinforcement learning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inference. The third part will cover fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an introduction to several topics from the computational learning theory, including the online and batch learning settings.

Name of the block: Elective courses Minimal number of credits of the block: 0 The role of the block: V

Code of the group: 2018_MOIEVOL Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group: Credits in the group: 0

Note on the group: ~Student can choose arbitrary subject of themagister's program (EEM - Electrical Engineering, Power Engineering and Management, EK - Electronics and Communications, KYR - Cybernetics and Robotics, OI - Open Informatics, OES - Open Electronics Systems) which is not part of his curriculum. Student can choose with consideration of recommendation of the branch guarantee. You can find a selection of optional courses organized by the departments on the web site http://www.fel.cvut.cz/cz/education/volitelne-predmety.html

List of courses of this pass:

Code	Name of the course	Completion	Credits				
BDIP25	Diploma Thesis	Z	25				
Independent final of	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h	ner branch of study	, which will				
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh-	ensive final examir	nation.				
BE4M01TAL	Theory of Algorithms	Z,ZK	6				
The course brings t	heoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems	s, secondly on the	correctness				
of algorithms. Furth	ner it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of th	em investigated. P	robabilistic				
	algorithms are studied and the classes RP and ZZP introduced.						
BE4M33PAL	Advanced Algorithms	Z,ZK	6				
Basic	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science -	battern matching.					
BE4M33SSU	Statistical Machine Learning	Z,ZK	6				
The aim of statistic	al machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	or knowledge abou	ut the task.				
This includes typica	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	pts such as risk m	inimisation,				
maximum likelihood	estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	on and regression a	and to show				
	how they can be learned by those concepts.						
BE4M35KO	Combinatorial Optimization	Z,ZK	6				
	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term o	•	, ,				
	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin						
algorithms and st	ate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl	anning of human r	esources,				
	scheduling in production lines, message routing, scheduling in parallel computers.						
BE4M36LUP	Logical Reasoning and Programming	Z,ZK	6				
	to explain selected significant methods of computational logic. These include algorithms for propositional satisfiability checking, logic		Prolog, and				
	der theorem proving and model-finding. Time permitting, we will also discuss some complexity and decidability issues pertaining to t	he said methods.					
BE4M36MAS	Computational Game Theory	Z,ZK	6				
	igned to introduce students to the fundamental concepts and applications of game theory, a powerful tool used to model strategic int	•					
organizations, or countries. Throughout the course, we will delve into various aspects of game theory and explore its wide-ranging applications in diverse fields, including machine							
	learning and AI.						
BE4M36PUI	Planning for Artificial Intelligence	Z,ZK	6				
The course covers the problematic of automated planning in artificial intelligence and focuses especially on domain independent models of planning problems: planning as a search							
in the space of states (state-space planning), in the space of plans (plan-space planning), heuristic planning, planning in graph representation of planning problems (graph-plan) or							
	lanning. The students will also learn about the problematic of planning under uncertainty and the planning model as a decision-maki	5					
BE4M36SMU	Symbolic Machine Learning	Z,ZK	6				
	ists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its (
reinforcement learning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inference. The third part will cover							
fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an							
	introduction to several topics from the computational learning theory, including the online and batch learning settings.						

BE4M36UIR	Artificial Intelligence in Robotics	Z,ZK	6		
The course aims to acquaint students with the use of planning approaches and decision-making techniques of artificial intelligence for solving problems arising in autonomous robotic					
systems. Students	n the course are employing knowledge of planning algorithms, game theory, and solving optimization problems in selected applicatio	n scenarios of mob	ile robotics.		
Students first learn	architectures of autonomous systems based on reactive and behavioral models of autonomous systems. The considered application s	cenarios and robot	tic problems		
include path planni	ng, persistent environmental monitoring, robotic exploration of unknown environments, online real-time decision-making, deconfliction	n in autonomous sy	stems, and		
solutions of antag	onistic conflicts. In laboratory exercises, students practice their problem formulations of robotic challenges and practical solutions in a	a realistic robotic si	imulator or		
consumer mobile	e robots. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide	students with a de	eper and		
	broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.				
BE4MSVP	Software or Research Project	KZ	6		
Independent work on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching diploma thesis and the project					
advisor is the diplo	advisor is the diploma thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and not underestimating its timely				
selection. The topic of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defined output, such as a technical					
report or a computer program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one subject of this type An exception					
may be granted by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different topic and is led by another					
supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course,					
then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be					
found on the website of the Department of Computer Graphics and Interaction http: //dcgi.felk. cvut.cz/cs/study/predmetprojekt.					
	tound on the website of the Department of Computer Graphics and Interaction http://dcgi.telk.cvut.cz/cs/study/predmetproje	ekt.			

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-20, time 13:54.