Study plan

Name of study plan: Open Informatics - Computer Vision and Image Processing

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Required credits: 85 Elective courses credits: 35 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 49 The role of the block: P

Code of the group: 2018_MOIEP Name of the group: Compulsory subjects of the programme Requirement credits in the group: In this group you have to gain 24 credits Requirement courses in the group: In this group you have to complete 4 courses Credits in the group: 24 Note on the group:

Note on the gi	Cap.					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Ρ
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	KZ	6		Z,L	Ρ
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEP Name=Compulsory subjects of the programme

BE4M33PAL	Advanced Algorithms	Z,ZK	6			
Basic graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - pattern matching.						
BE4M35KO	Combinatorial Optimization	Z,ZK	6			
The goal is to show the	problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the ter	m operations rese	arch). Following			
the courses on linear alg	gebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmi	ng, heuristics, ap	proximation			
algorithms and state spa	ace search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, p	planning of humar	resources,			
scheduling in productior	i lines, message routing, scheduling in parallel computers.					
BE4MSVP	Software or Research Project	KZ	6			
Independent work on a	problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approach	ing diploma thesis	and the project			
advisor is the diploma th	esis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester	and not underesti	mating its timely			
selection. The topic of th	e project should be relevant to the major branch of the study. The software and research project course must have a clearly c	lefined output, suc	ch as a technical			
report or a computer pro	gram. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one	subject of this typ	e An exception			
may be granted by the g	juarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a differen	t topic and is led l	by another			
supervisor. A typical exa	ample is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the	ne course does no	t list the course,			
then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be						
found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk. cvut.cz/cs/study/predmetprojekt.						
BE4M01TAL	Theory of Algorithms	Z,ZK	6			
The course brings theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems, secondly on the correctness						
of algorithms. Further it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of them investigated. Probabilistic						
algorithms are studied a	algorithms are studied and the classes RP and ZZP introduced.					

Code of the group: 2018_MOIEDIP Name of the group: Diploma Thesis

Requirement credits in the group: In this group you have to gain 25 credits Requirement courses in the group: In this group you have to complete 1 course Credits in the group: 25 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEDIP Name=Diploma Thesis

BDIP25Diploma ThesisZ25Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive tinal examination.Z25

Name of the block: Compulsory courses of the specialization Minimal number of credits of the block: 36 The role of the block: PO

Code of the group: 2018_MOIEPO5

Name of the group: Compulsory subjects of the branch Requirement credits in the group: In this group you have to gain 36 credits Requirement courses in the group: In this group you have to complete 6 courses

Credits in the group: 36

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M39VG	Computational Geometry Petr Felkel Petr Felkel (Gar.)	Z,ZK	6	2P+2S	Z	PO
BE4M33MPV	Computer Vision Methods Georgios Tolias, Ji í Matas, Jan ech, Dmytro Mishkin Ond ej Drbohlav Ji í Matas (Gar.)	Z,ZK	6	2P+2C	L	PO
BE4M33DZO	Digital Image Ond ej Drbohlav, Daniel Sýkora Daniel Sýkora (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M33GVG	Geometry of Computer Vision and Graphics Torsten Sattler, Viktor Korotynskiy, Tomáš Pajdla Tomáš Pajdla Tomáš Pajdla (Gar.)	Z,ZK	6	2P+2C	L	PO
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M33TDV	Three-dimensional Computer Vision Radim Šára Radim Šára Radim Šára (Gar.)	Z,ZK	6	2P+2C	Z	PO

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEPO5 Name=Compulsory subjects of the branch

BE4M39VG Computational Geometry	Z,ZK	6				
The goal of computational geometry is analysis and design of efficient algorithms for determining properties and relations of geometric entities. The lecture focuses on geometric search						
point location, convex hull construction for sets of points in d-dimensional space, searching nearest neighbor points, computing intersection of polygonal area	eas, geometry of	f parallelograms.				
New directions in algorithmic design. Computational geometry is applied not only in geometric applications, but also in common database searching pro-	oblems.					
BE4M33MPV Computer Vision Methods	Z,ZK	6				
The course covers selected computer vision problems: search for correspondences between images via interest point detection, description and matchi	ning, image stite	ching, detection,				
recognition and segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This co	ourse is also pa	art of the				
inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field o	of artificial intell	igence. More				
information is available at https://prg.ai/minor.						
BE4M33DZO Digital Image	Z,ZK	6				
This course presents an overview of basic methods for digital image processing. It deals with practical techniques that have an interesting theoretical basic	asis but are not	t difficult to				
implement. Seemingly abstract concepts from mathematical analysis, probability theory, or optimization come to life through visually engaging application	ions. The course	e focuses on				
fundamental principles (signal sampling and reconstruction, monadic operations, histogram, Fourier transform, convolution, linear and non-linear filtering	ng) and more a	dvanced editing				
techniques, including image stitching, deformation, registration, and segmentation. Students will practice the selected topics through six implementation tasks, which will help them						
learn the theoretical knowledge from the lectures and use it to solve practical problems.						
BE4M33GVG Geometry of Computer Vision and Graphics	Z,ZK	6				
We will explain fundamentals of image and space geometry including Euclidean, affine and projective geometry, the model of a perspective camera, image transformations induced						
by camera motion, and image normalization for object recognition. The theory will be demonstrated on practical task of creating mosaics from images, measuring the geometry of						
objects by a camera, and reconstructing geometrical properties of objects from their projections. We will build on linear algebra and optimization and lay down foundation for other						
subjects such as computational geometry, computer vision, computer graphics, digital image processing and recognition of objects in images.						

BE4M33SSU Statis	stical Machine Learning	Z,ZK	6
The aim of statistical machine le	earning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some	prior knowledge ab	out the task.
	eech and image recognition. The course has the following two main objectives 1. to present fundamental learning co	•	
	and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classific	cation and regression	on and to show
how they can be learned by tho		,	
	e-dimensional Computer Vision	Z,ZK	6
	s and algorithms for 3D geometric scene reconstruction from images. The student will understand these methods and		
	systems for reconstruction of 3D objects from a set of images or video, for inserting virtual objects to video-signal so		
virtual 3D model of an object of	nages. The labs will be hands-on, the student will be gradually building a small functional 3D scene reconstruction sy his/her choice	stem and using it to	o compute a
Name of the block:	Elective courses		
Minimal number of	credits of the block: 0		
The role of the bloc	sk: V		
Code of the group:	2018 MOIEVOL		
Name of the group:			
• .	•		
Dequirement and it	\$ 10 102 01010		
Requirement credit			
Requirement credit Requirement cours			
Requirement cours	es in the group:		
Requirement cours Credits in the group	es in the group: b: 0	al Engineering	Power
Requirement cours Credits in the group	es in the group: p: 0 ~Student can choose arbitrary subject of themagister's program (EEM - Electrica	al Engineering	, Power
Requirement cours Credits in the group	es in the group: b: 0 ~Student can choose arbitrary subject of themagister's program (EEM - Electrica Engineering and Management, EK - Electronics and Communications, KYR - Cy	bernetics and	Robotics,
Requirement cours Credits in the group	es in the group: b: 0 ~Student can choose arbitrary subject of themagister's program (EEM - Electrica Engineering and Management, EK - Electronics and Communications, KYR - Cy OI - Open Informatics, OES - Open Electronics Systems) which is not part of his	bernetics and curriculum. S	Robotics, tudent can
Requirement cours Credits in the group	es in the group: c: 0 ~Student can choose arbitrary subject of themagister's program (EEM - Electrica Engineering and Management, EK - Electronics and Communications, KYR - Cy OI - Open Informatics, OES - Open Electronics Systems) which is not part of his choose with consideration of recommendation of the branch guarantee. You can fi	bernetics and curriculum. S	Robotics, tudent can
Requirement cours Credits in the group	es in the group: b: 0 ~Student can choose arbitrary subject of themagister's program (EEM - Electrical Engineering and Management, EK - Electronics and Communications, KYR - Cy OI - Open Informatics, OES - Open Electronics Systems) which is not part of his choose with consideration of recommendation of the branch guarantee. You can fil courses organized by the departments on the web site	bernetics and curriculum. S	Robotics, tudent can
Requirement cours Credits in the group	es in the group: c: 0 ~Student can choose arbitrary subject of themagister's program (EEM - Electrica Engineering and Management, EK - Electronics and Communications, KYR - Cy OI - Open Informatics, OES - Open Electronics Systems) which is not part of his choose with consideration of recommendation of the branch guarantee. You can fi	bernetics and curriculum. S	Robotics, tudent can

List of courses of this pass:

Code	Name of the course	Completion	Credits			
BDIP25	Diploma Thesis	Z	25			
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or	her branch of study	, which will			
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehenced	ensive final examir	nation.			
BE4M01TAL	Theory of Algorithms	Z,ZK	6			
The course brings	heoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems	s, secondly on the	correctness			
of algorithms. Furt	her it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of th	em investigated. P	robabilistic			
	algorithms are studied and the classes RP and ZZP introduced.					
BE4M33DZO	Digital Image	Z,ZK	6			
This course pres	ents an overview of basic methods for digital image processing. It deals with practical techniques that have an interesting theoretical	basis but are not o	difficult to			
	ingly abstract concepts from mathematical analysis, probability theory, or optimization come to life through visually engaging applicat					
	ples (signal sampling and reconstruction, monadic operations, histogram, Fourier transform, convolution, linear and non-linear filterin		•			
techniques, incluc	ing image stitching, deformation, registration, and segmentation. Students will practice the selected topics through six implementatio	n tasks, which will	help them			
	learn the theoretical knowledge from the lectures and use it to solve practical problems.					
BE4M33GVG	Geometry of Computer Vision and Graphics	Z,ZK	6			
	adamentals of image and space geometry including Euclidean, affine and projective geometry, the model of a perspective camera, im	•				
	n, and image normalization for object recognition. The theory will be demonstrated on practical task of creating mosaics from images					
objects by a cam	era, and reconstructing geometrical properties of objects from their projections. We will build on linear algebra and optimization and l		n for other			
	subjects such as computational geometry, computer vision, computer graphics, digital image processing and recognition of objects	in images.				
BE4M33MPV	Computer Vision Methods	Z,ZK	6			
	selected computer vision problems: search for correspondences between images via interest point detection, description and matchi					
s a	segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This					
inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More						
	information is available at https://prg.ai/minor.					
BE4M33PAL	Advanced Algorithms	Z,ZK	6			
Basic	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - p	pattern matching.				
BE4M33SSU	Statistical Machine Learning	Z,ZK	6			
The aim of statistical machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some prior knowledge about the task.						
This includes typical tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning concepts such as risk minimisation,						
maximum likelihood estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification and regression and to show						
how they can be learned by those concepts.						
BE4M33TDV	Three-dimensional Computer Vision	Z,ZK	6			
	This course introduces methods and algorithms for 3D geometric scene reconstruction from images. The student will understand these methods and their essence well enough to be					
able to build varian	able to build variants of simple systems for reconstruction of 3D objects from a set of images or video, for inserting virtual objects to video-signal source, or for computing ego-motion					

trajectory from a sequence of images. The labs will be hands-on, the student will be gradually building a small functional 3D scene reconstruction system and using it to compute a virtual 3D model of an object of his/her choice.

	viltual 3D model of an object of his/her choice.				
BE4M35KO	Combinatorial Optimization	Z,ZK	6		
The goal is to show	The goal is to show the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term operations research). Followir				
the courses on li	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin	g, heuristics, appro	oximation		
algorithms and s	tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pla	anning of human re	esources,		
	scheduling in production lines, message routing, scheduling in parallel computers.				
BE4M39VG	Computational Geometry	Z,ZK	6		
The goal of comput	ational geometry is analysis and design of efficient algorithms for determining properties and relations of geometric entities. The lecture	focuses on geome	etric search,		
point location, conv	ex hull construction for sets of points in d-dimensional space, searching nearest neighbor points, computing intersection of polygonal area	is, geometry of para	allelograms.		
New di	ections in algorithmic design. Computational geometry is applied not only in geometric applications, but also in common database se	arching problems.			
BE4MSVP	Software or Research Project	KZ	6		
Independent work	on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching	diploma thesis and	the project		
advisor is the diploma thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and not underestimating its timely					
selection. The topic of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defined output, such as a technical					
report or a computer program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one subject of this type An exception					
may be granted by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different topic and is led by another					
supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course,					
then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be					
found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk.cvut.cz/cs/study/predmetprojekt.					

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-06-20, time 02:06.