Study plan

Name of study plan: Open Informatics - Computer Engineering

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time

Required credits: 85

Elective courses credits: 35 Sum of credits in the plan: 120

Note on the plan:

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 49

The role of the block: P

Code of the group: 2018_MOIEP

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 24 credits

Requirement courses in the group: In this group you have to complete 4 courses

Credits in the group: 24 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Р
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	KZ	6		Z,L	Р
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEP Name=Compulsory subjects of the programme

	<u> </u>	<u>. </u>		
BE4M33PAL	Advanced Algorithms	Z,ZK	6	
Basic graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - pattern matching.				
BE4M35KO	Combinatorial Optimization	Z,ZK	6	

The goal is to show the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term operations research). Following the courses on linear algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programming, heuristics, approximation algorithms and state space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, planning of human resources, scheduling in production lines, message routing, scheduling in parallel computers.

BE4MSVP Software or Research Project

K7

Independent work on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching diploma thesis and the project advisor is the diploma thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and not underestimating its timely selection. The topic of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defined output, such as a technical report or a computer program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one subject of this type. - An exception may be granted by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different topic and is led by another supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course, then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk.cvut.cz/cs/study/predmetprojekt.

Theory of Algorithms

The course brings theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems, secondly on the correctness of algorithms. Further it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of them investigated. Probabilistic algorithms are studied and the classes RP and ZZP introduced.

Code of the group: 2018_MOIEDIP Name of the group: Diploma Thesis Requirement credits in the group: In this group you have to gain 25 credits

Requirement courses in the group: In this group you have to complete 1 course

Credits in the group: 25

Note on the group:

Code	•	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP	25	Diploma Thesis	Z	25	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEDIP Name=Diploma Thesis

Diploma Thesis

Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.

Name of the block: Compulsory courses of the specialization

Minimal number of credits of the block: 36

The role of the block: PO

Code of the group: 2018_MOIEPO4

Name of the group: Compulsory subjects of the branch

Requirement credits in the group: In this group you have to gain 36 credits

Requirement courses in the group: In this group you have to complete 6 courses

Credits in the group: 36 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M35PAP	Advanced Computer Architectures Pavel Píša, Karel Ko í Pavel Píša Pavel Píša (Gar.)	Z,ZK	6	2P+2C	Z	РО
BE4M38AVS	Application of Embedded Systems	Z,ZK	6	2P+2L	L	PO
BE4M38KRP	Computer Interfaces Ji í Novák Ji í Novák Ji í Novák (Gar.)	Z,ZK	6	2P+2L	Z	PO
BE4M36ESW	Effective Software Michal Sojka, David Šišlák David Šišlák (Gar.)	Z,ZK	6	2P+2C	L	РО
BE4M35PAG	Parallel algorithms Pemysl Š cha Pemysl Š cha (Gar.)	Z,ZK	6	2P+2S	Z	РО
BE4M34ISC	Systems on Chip	Z,ZK	6	2P+2L	Z	РО

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEPO4 Name=Compulsory subjects of the branch

BE4M35PAP	Advanced Computer Architectures	Z,ZK	6
BE4M38AVS	Application of Embedded Systems	Z,ZK	6

This course presents applications of embedded systems and their specifics. It is expected that the students have had a programming course, and thus the course is more oriented on explaining and describing the blocks and functions of embedded systems and their use in signal processing, rather than writing code. After completing this course, students should have an overview of usability and power of available processors, and their peripherals, on the basis of which, they should be able to independently design embedded systems for a wide spectrum of applications.

BE4M38KRP Computer Interfaces

Students are acquainted with functional principles of computers and embedded systems communication interfaces and with a design of typical peripherals. Technologies like USB. PCI, and PCI Express, wired and wireless computer and sensor networks as well as industrial distributed systems like CAN and LIN are introduced. Project oriented laboratories will allow students to become familiar with implementation of communication hardware and software into the real devices, including their support in operating systems.

Effective Software

Within the course of Efficient software you will get familiar with the area of software and algorithm optimization under limited resources. The course is focused on the efficient usage of modern hardware architectures - multi-core and multi-processor systems with shared memory. Students will practically implmenet and use presented techniques in C and Java. Main topics are: code optimization, effective data structures and processor cache usage, data structures in multi-threaded applications and implementation of efficient network servers.

BF4M35PAG Parallel algorithms

In the introductory lectures, we will focus on general approaches to design of parallel algorithms and their properties important for understanding the fundamental principles of parallel and distributed algorithms. Subsequently we will talk about fundamental parallel algorithms; typically, constituting cornerstones of algorithms for real-world problems. The laboratory exercise will be aimed at hardware platform commonly used in practice.

BE4M34ISC Systems on Chip

7.7K

Main responsibilities of integrated circuits designer; design abstraction levels - Y chart. Specification designation, feasibility study, criteria for technology and design kits selection. Analogue and digital integrated systems design and simulation methodologies. Main features of application specific ICs - full custom design, gate arrays, standard cells, programmable array logic. Design aspects mobile and low power systems. Hardware Description languages (HDL). Logic and physical synthesis. Frond End and Back End design. Floorplanning, place and route, layout, parasitic extraction, time analysis, testbenche construction and verification.

Name of the block: Elective courses

Minimal number of credits of the block: 0

The role of the block: V

Code of the group: 2018 MOIEVOL Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group:

Credits in the group: 0

Note on the group: ~Student can choose arbitrary subject of themagister's program (EEM - Electrical Engineering, Power Engineering and Management, EK - Electronics and Communications, KYR - Cybernetics and Robotics, OI - Open Informatics, OES - Open Electronics Systems) which is not part of his curriculum. Student can choose with consideration of recommendation of the branch guarantee. You can find a selection of optional courses organized by the departments on the web site http://www.fel.cvut.cz/cz/education/volitelne-predmety.html

List of courses of this pass:

Code	Name of the course	Completion	Credits				
BDIP25	Diploma Thesis	Z	25				
Independent final	ner branch of study	, which will					
be specified I	be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.						
BE4M01TAL	Theory of Algorithms	Z,ZK	6				
The course brings	theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems	s, secondly on the	correctness				
of algorithms. Fur	ther it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of th	em investigated. P	robabilistic				
	algorithms are studied and the classes RP and ZZP introduced.						
BE4M33PAL	Advanced Algorithms	Z,ZK	6				
Basic	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - p	pattern matching.					
BE4M34ISC	Systems on Chip	Z,ZK	6				
Main responsibil	ities of integrated circuits designer; design abstraction levels - Y chart. Specification designation, feasibility study, criteria for technologi	gy and design kits	selection.				
Analogue and digit	al integrated systems design and simulation methodologies. Main features of application specific ICs - full custom design, gate arrays,	standard cells, pro	ogrammable				
array logic. Desig	ın aspects mobile and low power systems. Hardware Description languages (HDL). Logic and physical synthesis. Frond End and Bacl	k End design. Floo	rplanning,				
	place and route, layout, parasitic extraction, time analysis, testbenche construction and verification.						
BE4M35KO	Combinatorial Optimization	Z,ZK	6				
_	vithe problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term o						
	inear algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin						
algorithms and s	tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl	anning of human r	esources,				
	scheduling in production lines, message routing, scheduling in parallel computers.						
BE4M35PAG	Parallel algorithms	Z,ZK	6				
	lectures, we will focus on general approaches to design of parallel algorithms and their properties important for understanding the fun						
and distributed al	gorithms. Subsequently we will talk about fundamental parallel algorithms; typically, constituting cornerstones of algorithms for real-we	orld problems. The	laboratory				
DE 4140EDAD	exercise will be aimed at hardware platform commonly used in practice.	7.71					
BE4M35PAP	Advanced Computer Architectures	Z,ZK	6				
BE4M36ESW		Z,ZK	6				
	of Efficient software you will get familiar with the area of software and algorithm optimization under limited resources. The course is foo		•				
	architectures - multi-core and multi-processor systems with shared memory. Students will practically implmenet and use presented te	· ·					
	optimization, effective data structures and processor cache usage, data structures in multi-threaded applications and implementation						
BE4M38AVS	Application of Embedded Systems	Z,ZK	6				
	nts applications of embedded systems and their specifics. It is expected that the students have had a programming course, and thus t						
	escribing the blocks and functions of embedded systems and their use in signal processing, rather than writing code. After completing						
have an overview	of usability and power of available processors, and their peripherals, on the basis of which, they should be able to independently des wide spectrum of applications.	sign embedded sys	stems for a				
BE4M38KRP		Z.ZK	6				
!	uainted with functional principles of computers and embedded systems communication interfaces and with a design of typical periphe	, ,	_				
	ress, wired and wireless computer and sensor networks as well as industrial distributed systems like CAN and LIN are introduced. Pro						
	dents to become familiar with implementation of communication hardware and software into the real devices, including their support in	-					
BE4MSVP	Software or Research Project	KZ	6				
	on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching		_				
	ma thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and	•					
	selection. The topic of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defined output, such as a technical						
	er program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one sub	•					
	by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different		•				
1							

supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course,

then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk.cvut.cz/cs/study/predmetprojekt.

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-06-07, time 16:14.