Study plan

Name of study plan: Medical electronics and bioinformatics

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Medical Electronics and Bioinformatics

Type of study: Follow-up master full-time

Required credits: 114
Elective courses credits: 6
Sum of credits in the plan: 120

Note on the plan: Specializace Léka ská technika

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 60

The role of the block: P

Code of the group: 2018_MBIODIP Name of the group: Diploma Thesis

Requirement credits in the group: In this group you have to gain 30 credits Requirement courses in the group: In this group you have to complete 1 course

Credits in the group: 30 Note on the group:

Code	Name of the course / Name of the group of courses	Completion	Cradite	Scone	Samastar	Role
	members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Kole
	rations, authors and guarantons (gai.)					
BDIP30	Diploma Thesis	Z	30	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MBIODIP Name=Diploma Thesis

BDIP30	Diploma Thesis	Z	30					
Independent final com	Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will							
ha anadifical by branch	department or brench departments. The diplome thesis will be defended in front of the heard of examiners for the community	anius final avamin	ation					

Code of the group: 2018_MBIOP

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 30 credits

Requirement courses in the group: In this group you have to complete 5 courses

Credits in the group: 30

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BAM31BSG	Biological signals Roman mejla Roman mejla (Gar.)	Z,ZK	6	2P+2L	L	Р
BMPROJ6	Diploma Project Roman mejla, Jan Kybic, Vratislav Fabián, Petr Pošík Petr Pošík Roman mejla (Gar.)	Z	6	0p+6s	Z,L	Р
BAM31LET	Medical Instrumentation and Devices Jan Havlík Jan Havlík (Gar.)	Z,ZK	6	2P+2L	Z	Р
B4M36SAN	Statistical Data Analysis Ji í Kléma Ji í Kléma Ji í Kléma (Gar.)	Z,ZK	6	2P+2C	Z	Р
BAM33ZSL	Medical Imaging Systems Jan Kybic, Vít Herynek, André Sopczak Jan Kybic Jan Kybic (Gar.)	Z,ZK	6	2P+2C	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MBIOP Name=Compulsory subjects of the programme

BAM31BSG	Biological signals					Z,ZK	6
BMPROJ6	Diploma Project					Z	6

BAM31LET Medical Instrumentation and Devices

Students will study fundamental principles applied within the modern medical devices and systems, esp. from the point of view of functional blocks and electronic circuits of diagnostical and therapeutical medical equipments including electrocardiographs, electroencephalographs, bedside and central monitors, equipments for anestesiology, intensive and critical healthcare, equipments for clinical laboratory, electrostimulators, cardiostimulators and defibrilators, blood pressure and flow measurement (including dilution) and pulse oxymetry.

Statistical Data Analysis

This course builds on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly aims at multivariate statistical analysis and modelling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a purely statistical counterpart to machine learning and data mining courses.

Medical Imaging Systems

The course covers the principles, design and properties of currently used medical imaging devices. We shall deal with 2D microscopic, X-ray and ultrasound imaging systems, including advanced topics such as Doppler ultrasound. We will also study tomographic (3D) imaging systems: computed tomography (CT), magnetic resonance imaging (MRI) including functional MRI (fMRI) and nuclear imaging methods (PET,SPECT). For more information see https://cw.fel.cvut.cz/wiki/courses/zsl

Name of the block: Compulsory courses in the specialization

Minimal number of credits of the block: 30

The role of the block: PS

Code of the group: 2018 MBIOPS2

Name of the group: Compulsory subjects of specialization

Requirement credits in the group: In this group you have to gain 30 credits

Requirement courses in the group: In this group you have to complete 5 courses

Credits in the group: 30 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BAM17EPM	Applications of Electromagnetic Fields in Medicine Jan Vrba, Ladislav Oppl Jan Vrba Jan Vrba (Gar.)	Z,ZK	6	2P+2L	L	PS
BAM02FPT	Physics for Diagnostics and Therapy Vratislav Fabián, Jan Vrba, Ladislav Oppl Vratislav Fabián Vratislav Fabián (Gar.)	Z,ZK	6	2P+2L		PS
BAM38KLS	Construction of Medical Systems Jan Holub Jan Holub (Gar.)	Z,ZK	6	2P+2L	Z	PS
BAM31NPG	Neurophysiology P emysl Jiruška, Helena Pivo ková P emysl Jiruška P emysl Jiruška (Gar.)	Z,ZK	6	2P+2C	Z	PS
BAM31ZAS	Analog Signal Processing Jií Hospodka Jií Hospodka Jií Hospodka (Gar.)	Z,ZK	6	2P+2L	L	PS

Characteristics of the courses of this group of Study Plan: Code=2018 MBIOPS2 Name=Compulsory

Onal actoristics of	the courses of this group of orday fram: code=2010_MBTOT 02 Name=00mpaisory subject	to or speci
BAM17EPM	Applications of Electromagnetic Fields in Medicine	Z,ZK

attention is paid to the possibilities of using ignizing electromagnetic fields in medical diagnostics and therapy (eg X-ray, proton therapy, radiotherapy, etc.)

The major aim of these lectures is to give to students a basic overview of biophysical aspects of EM fields in different biological systems, including an overview of microwave applications in medicine. Safety limits, clinical usage of EM field effects on biological systems, microwave hyperthermia, measurement of dielectric parameters of biological tissues, EM exposure of mobile phone users, magnetic resonance imaging, interaction of optical radiation with biological tissue.

RAM02FPT Physics for Diagnostics and Therapy

In this course, students will be introduced to the problems of locomotive organs diseases and musculoskeletal pain in the first seven lectures. Great space is devoted to electrotherapeutic methods, therapeutic ultrasound and phototherapy. Furthermore, advanced neurorehabilitation methods, especially transcranial brain stimulation methods (repetitive transcranial magnetic stimulation of the brain - rTMS, transcranial electrical stimulation of the brain - tDCS and electroconvulsive therapy - ECT) are discussed. In the second half of the semester,

attention is paid to the	possibilities of using formating electromagnetic fields in medical diagnostics and therapy (eg X ray, proton therapy, radiotherap)	y, c.c.).	
BAM38KLS	Construction of Medical Systems	Z,ZK	6
BAM31NPG	Neurophysiology	Z,ZK	6
BAM31ZAS	Analog Signal Processing	Z,ZK	6

The course deals with analog input-output blocks for signal transmission and processing. They discussed circuit solution of amplifiers and filters, including their design process, simulation and measurement. Students learn the circuit concepts and possibilities for solving the contemporary analogue structures. The second part of the course describes the design and implementation of analog filters, including discrete-time circuits. The conclusion is devoted to the possibilities of computer optimization of electronic circuits and filters.

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 24

The role of the block: PV

Code of the group: 2018 MBIOPPV2

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 24 credits

Requirement courses in the group: In this group you have to complete 4 courses

Credits in the group: 24 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members)	Completion	Credits	Scope	Semester	Role
	Tutors, authors and guarantors (gar.)					
BAM31ADA	Adaptive signal processing Radoslav Bortel, Pavel Sovka Radoslav Bortel (Gar.)	Z,ZK	6	2P+2C	Z	PV
B2M31AEDA	Experimental Data Analysis Jan Rusz Jan Rusz Jan Rusz (Gar.)	Z,ZK	6	2P+2C	Z	PV
BAM31AOL	Applied optoelectronics in medicine Jan Havlík Jan Havlík Jan Havlík (Gar.)	Z,ZK	6	2P+2L	L	PV
BAM36BIN	Bioinformatics Ji í Kléma Ji í Kléma Ji í Kléma (Gar.)	Z,ZK	6	2P+2C	L	PV
BAM02BIO	Biosensors Bohuslav Rezek Bohuslav Rezek (Gar.)	Z,ZK	6	2P+2L	Z	PV
B0M37FAV	Physiology and modeling of hearing and vision Miloš Klíma, Václav Vencovský, Petr Maršálek, Karel Fliegel Karel Fliegel Václav Vencovský (Gar.)	Z,ZK	6	2P+2C+4D	Z	PV
B4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	PV
B4M33MPV	Computer Vision Methods Georgios Tolias, Ji í Matas, Jan ech, Dmytro Mishkin Ond ej Drbohlav Ji í Matas (Gar.)	Z,ZK	6	2P+2C	L	PV
BAM31MOA	Modeling and analysis of brain activity Jaroslav Hlinka Jaroslav Hlinka (Gar.)	Z,ZK	6	2P+2C	Z	PV
B4M36MBG	Molecular Biology and Genetics Martin Pospíšek Martin Pospíšek (Gar.)	Z,ZK	6	3P+1C	L	PV
BAM33NIN	Neuroinformatics Giulia D'Angelo, Ji í Hammer, Daniel Novák, Eduard Bakštein, Karla Št pánová, Ján Antolík, David Kala Daniel Novák Daniel Novák (Gar.)	Z,ZK	6	2P+2C	L	PV
B4M33PAL	Advanced algorithms Marko Genyk-Berezovskyj, Daniel Pr ša, Ond ej Drbohlav Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	PV
B2M31DSP	Advanced DSP methods Pavel Sovka, Petr Pollák Pavel Sovka Pavel Sovka (Gar.)	Z,ZK	6	2P+2C	Z,L	PV
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PV
B4M36SMU	Symbolic Machine Learning Filip Železný, Ond ej Kuželka, Gustav Šír Ond ej Kuželka Ond ej Kuželka (Gar.)	Z,ZK	6	2P+2C	L	PV
BAM17EMC	Introduction to electromagnetic compatibility Tomáš Ko ínek Tomáš Ko ínek Tomáš Ko ínek (Gar.)	Z,ZK	6	2P+2L	Z	PV
BAM33ZMO	Medical Image Processing Jan Kybic, Oleksandr Shekhovtsov Jan Kybic Jan Kybic (Gar.)	Z,ZK	6	2P+2C	Z	PV

This course provides a basic discourse on adaptive algorithms for filtering, decorrelation, separation and beamforming.									
B2M31AEDA	Experimental Data Analysis	Z,ZK	6						
In the course of subject "Experimental Data Analysis", students will acquire knowledge regarding fundamental methods for data analysis and machine learning for evaluation and									
interpretation of data. In	n the course of practical lectures, students will solve individual tasks using real data from signal processing in neuroscience re	search. In the cou	rse of semestral						
project, student will sol	ve complex task and present obtained results. The aim of the subject is to introduce practical application of fundamental static	stical methods as	well as to teach						
students to use critical	thinking and to acquire additional knowledge in solution of practical tasks.								
BAM31AOL	Applied optoelectronics in medicine	Z,ZK	6						
BAM36BIN	Bioinformatics	Z,ZK	6						
BAM02BIO	Biosensors	Z,ZK	6						

The primary aim of the course is to study the physiology of sensors and processes of perception of audio and visual information by human subjects as two central and most important communication channels, i.e., Human Auditory System (HAS) and Human Visual System (HVS). The course summarizes current knowledge in the field of human vision and hearing physiology and, at the same time, presents their description using mathematical models using the latest computational tools and procedures, including Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI). Emphasis is also placed on current and prospective applications of the mentioned knowledge. The main application area is the audiovisual technology related to human perception, but the direct employment of the acquired knowledge also includes the areas of multimedia technology, control systems, automation, robotics, safety and security technology, bioinspired systems, etc. At the same time, students gain a general overview of information processing in biological systems. A separate part is the objectification of audiovisual information perceived quality, i.e., Quality of Experience (QoE). The course is intended for students of master's degree in technical fields. The exercises will be devoted to fundamental experiments to determine the most important characteristics of HAS and HVS, including computational models and simulation of vision and hearing processes.

B4M35KO Combinatorial Optimization Z,ZK

The goal is to show the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term operations research). Following the courses on linear algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programming, heuristics, approximation algorithms and state space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, planning of human resources, scheduling in production lines, message routing, scheduling in parallel computers.

B4M33MPV Computer Vision Methods

Adaptive signal processing

Physiology and modeling of hearing and vision

BAM31ADA

B0M37FAV

Z,ZK

Z.ZK

6

The course covers selected computer vision problems: search for correspondences between images via interest point detection, description and matching, image stitching, detection, recognition and segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More

information is available	at https://prg.ai/minor.		
BAM31MOA	Modeling and analysis of brain activity	Z,ZK	6

B4M36MBG Molecular Biology and Genetics Z,ZK								
BAM33NIN	33NIN Neuroinformatics							
The Neuroinformatics (Sourse concentrates on modelling of neurons, stochastic learning on cellular level, information coding and decoding in brain an	d single unit proce	ssing. Examples					
from clinical practices a	from clinical practices are provided throughout the course. The labs focus on signal neuron analysis from human and animal brain.							
B4M33PAL	Advanced algorithms	Z,ZK	6					

The course follows the basic course in signal processing and introduces advanced methods of analysis and digital signal processing. Graduates will learn the methods of digital signals analysis and be able to practically use them. They learn to know the conditions of use of correlation, spectral and coherent analysis of random signals. They will became familiar with methods of signal decomposition and independent component analysis and the time-frequency transformations. Emphasis will be placed on an ability to interpret the results of signal analyses.

Basic graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - pattern matching

BE4M33SSU Statistical Machine Learning

B2M31DSP

Z,ZK

Z.ZK

The aim of statistical machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some prior knowledge about the task. This includes typical tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning concepts such as risk minimisation, maximum likelihood estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification and regression and to show how they can be learned by those concepts.

B4M36SMU Symbolic Machine Learning

Z,ZK

This course consists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its environment, also known as reinforcement learning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inference. The third part will cover fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an introduction to several topics from the computational learning theory, including the online and batch learning settings.

BAM17EMC Introduction to electromagnetic compatibility

Advanced DSP methods

7K

6

The subject dwells on problems of electromagnetic compatibility. Students obtain the basic knowledges in the field of electromagnetic compatibility - electromagnetic interference, susceptibility and testing methods. The subject leads to gain professional skills in the field of electrical engineering.

BAM33ZMO Medical Image Processing

Z,ZK

6

This course covers the most used advanced image analysis methods, with emphasis on images from medical and biological modalities, from microscopy, to ultrasound, MRI, or CT, including time sequences.

Name of the block: Elective courses Minimal number of credits of the block: 0

The role of the block: V

Code of the group: 2018_MBIOH

Name of the group: Humanities subjects

Requirement credits in the group: Requirement courses in the group:

Credits in the group: 0

Note on the group:

vote on the group.						
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0M16FIL	Peter Zamarovský Peter Zamarovský Peter Zamarovský (Gar.)	Z,ZK	5	2P+2S	Z,L	V
B0M16HVT	History of science and technology 2 Marcela Efmertová, Jan Mikeš Marcela Efmertová Marcela Efmertová (Gar.)	Z,ZK	5	2P+2S	Z,L	V
B0M16HSD1	History of economy and social studies Marcela Efmertová	Z,ZK	5	2P+2S	Z,L	V
B0M16PSM	Psychology Jan Fiala Jan Fiala (Gar.)	Z,ZK	5	2P+2S	Z,L	V
B0M16TEO	Theology Vladimír Sláme ka Vladimír Sláme ka Vladimír Sláme ka (Gar.)	Z,ZK	5	2P+2S	Z,L	V

Characteristics of the courses of this group of Study Plan: Code=2018_MBIOH Name=Humanities subjects

B0M16FIL		Z,ZK	5
B0M16HVT	History of science and technology 2	Z,ZK	5
This subject traces h	istorical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate s	tudents' interest in	n the history and
traditions of the subje	ect, while highlighting the developments in technical education and professional organizations, the process of shaping scientific	life and the influe	nce of technical
engineers			
B0M16HSD1	History of economy and social studies	Z,ZK	5
This subject deals wi	th the history of the Czech society in the 19th - 21th centuries. It follows the forming of the Czech political representation, its air	ns and achieved r	esults as well as
the social and cultura	al development and coexistence of the various ethnical groups in the Czech countries.		
B0M16PSM	Psychology	Z,ZK	5
B0M16TEO	Theology	Z,ZK	5
This subject provides	to students the basic orientation in christian theology and requires no special previous education. After short philosophic lectu	re the basic theol	ogic disciplines
are gone through. Th	e subject is determined not only to believer students who want to know the reliable theologic grounding but also above all to ones	s who want to get I	know Christianity
- religion from which	graws our civilization up		

Code of the group: 2018_MBIOVOL

Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group:

Credits in the group: 0

Note on the group:

~Nabídku volitelných předmětů uspořádaných podle kateder najdete na webových stránkách http://www.fel.cvut.cz/cz/education/volitelne-predmety.html\\

List of courses of this pass:

Code	Name of the course	Completion	Credits				
B0M16FIL		Z,ZK	5				
B0M16HSD1	History of economy and social studies	Z,ZK	5				
	with the history of the Czech society in the 19th - 21th centuries. It follows the forming of the Czech political representation, its aims a		s as well as				
	the social and cultural development and coexistence of the various ethnical groups in the Czech countries.						
B0M16HVT	History of science and technology 2	Z,ZK	5				
This subject traces	historical developments in electrical engineering branches in the world and in the Czech Lands. Its ultimate goal is to stimulate stude	nts' interest in the	history and				
traditions of the sul	oject, while highlighting the developments in technical education and professional organizations, the process of shaping scientific life engineers	and the influence	of technical				
B0M16PSM	Psychology	Z,ZK	5				
B0M16TEO	Theology	Z,ZK	5				
	les to students the basic orientation in christian theology and requires no special previous education. After short philosophic lecture t		disciplines				
are gone through. T	he subject is determined not only to believer students who want to know the reliable theologic grounding but also above all to ones who	want to get know	Christianity				
	- religion from which graws our civilization up.						
B0M37FAV	Physiology and modeling of hearing and vision	Z,ZK	6				
	the course is to study the physiology of sensors and processes of perception of audio and visual information by human subjects as t	vo central and mo	st important				
communication cha	annels, i.e., Human Auditory System (HAS) and Human Visual System (HVS). The course summarizes current knowledge in the field	of human vision a	nd hearing				
physiology and, at	the same time, presents their description using mathematical models using the latest computational tools and procedures, including l	Machine Learning	(ML), Deep				
Learning (DL) and	Artificial Intelligence (AI). Emphasis is also placed on current and prospective applications of the mentioned knowledge. The main app	ication area is the	audiovisual				
technology related	to human perception, but the direct employment of the acquired knowledge also includes the areas of multimedia technology, control s	systems, automatic	on, robotics,				
safety and securit	y technology, bioinspired systems, etc. At the same time, students gain a general overview of information processing in biological sys	tems. A separate	part is the				
objectification of a	udiovisual information perceived quality, i.e., Quality of Experience (QoE). The course is intended for students of master's degree in t	echnical fields. The	e exercises				
will be devoted to	fundamental experiments to determine the most important characteristics of HAS and HVS, including computational models and sim	ulation of vision ar	nd hearing				
	processes.						
B2M31AEDA	Experimental Data Analysis	Z,ZK	6				
In the course of s	subject "Experimental Data Analysis", students will acquire knowledge regarding fundamental methods for data analysis and machine	learning for evalu	ation and				
interpretation of dat	a. In the course of practical lectures, students will solve individual tasks using real data from signal processing in neuroscience resea	ch. In the course of	of semestral				
project, student wil	solve complex task and present obtained results. The aim of the subject is to introduce practical application of fundamental statistical	I methods as well	as to teach				
	students to use critical thinking and to acquire additional knowledge in solution of practical tasks.						
B2M31DSP	Advanced DSP methods	Z,ZK	6				
The course follows	the basic course in signal processing and introduces advanced methods of analysis and digital signal processing. Graduates will learn	the methods of di	gital signals				
analysis and be ab	le to practically use them. They learn to know the conditions of use of correlation, spectral and coherent analysis of random signals. $^{ extstyle 1}$	hey will became f	amiliar with				
methods of signal of	decomposition and independent component analysis and the time-frequency transformations. Emphasis will be placed on an ability to analyses.	interpret the resu	lts of signal				
B4M33MPV	Computer Vision Methods	Z,ZK	6				
	selected computer vision problems: search for correspondences between images via interest point detection, description and matchi						
recognition and	segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This	course is also pa	rt of the				
inter-university pro	ogramme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field	of artificial intellige	nce. More				
	information is available at https://prg.ai/minor.						
B4M33PAL	Advanced algorithms	Z,ZK	6				
Basic	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - p	attern matching.					
B4M35KO	Combinatorial Optimization	Z,ZK	6				
	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term of	,					
the courses on li	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin	g, heuristics, appro	oximation				
algorithms and st	ate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pla	anning of human re	esources,				
	scheduling in production lines, message routing, scheduling in parallel computers.						
B4M36MBG	Molecular Biology and Genetics	Z,ZK	6				
B4M36SAN	Statistical Data Analysis	z,zk	6				
	on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly		_				
	lling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a p						
,	machine learning and data mining courses.	,					
B4M36SMU	Symbolic Machine Learning	Z,ZK	6				
	sists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its e						
THIS COURSE COILS	note of four partor the mot part of the course will explain motified through which are mongent agent carried in by interacting with the						

fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an introduction to several topics from the computational learning theory, including the online and batch learning settings.

BAM02BIO	Biosensors	Z,ZK	6
BAM02FPT	Physics for Diagnostics and Therapy	Z,ZK	6
	ents will be introduced to the problems of locomotive organs diseases and musculoskeletal pain in the first seven lectures. Great space i		
	eutic ultrasound and phototherapy. Furthermore, advanced neurorehabilitation methods, especially transcranial brain stimulation met		
-	on of the brain - rTMS, transcranial electrical stimulation of the brain - tDCS and electroconvulsive therapy - ECT) are discussed. In the		the semester
	tion is paid to the possibilities of using ionizing electromagnetic fields in medical diagnostics and therapy (eg X-ray, proton therapy, ra	diotherapy, etc.).	
BAM17EMC	Introduction to electromagnetic compatibility	Z,ZK	6
The subject dwel	lls on problems of electromagnetic compatibility. Students obtain the basic knowledges in the field of electromagnetic compatibility - e susceptibility and testing methods. The subject leads to gain professional skills in the field of electrical engineering.	electromagnetic in	iterference,
DAMAZEDM		7.71/	
BAM17EPM	Applications of Electromagnetic Fields in Medicine	Z,ZK	6
-	lese lectures is to give to students a basic overview of biophysical aspects of EM fields in different biological systems, including an over		
in medicine. Salety	r limits, clinical usage of EM field effects on biological systems, microwave hyperthermia, measurement of dielectric parameters of biof mobile phone users, magnetic resonance imaging, interaction of optical radiation with biological tissue.	ological tissues, E	zivi exposure
DAMOAADA		7.71/	
BAM31ADA	Adaptive signal processing	Z,ZK	6
DAMO A A OL	This course provides a basic discourse on adaptive algorithms for filtering, decorrelation, separation and beamforming.	7.71/	
BAM31AOL	Applied optoelectronics in medicine	Z,ZK	6
BAM31BSG	Biological signals	Z,ZK	6
BAM31LET	Medical Instrumentation and Devices	Z,ZK	6
Students will study	fundamental principles applied within the modern medical devices and systems, esp. from the point of view of functional blocks and el	ectronic circuits of	f diagnostica
and therapeutica	al medical equipments including electrocardiographs, electroencephalographs, bedside and central monitors, equipments for anestes	iology, intensive a	and critical
healthcare, equip	ments for clinical laboratory, electrostimulators, cardiostimulators and defibrilators, blood pressure and flow measurement (including	dilution) and puls	e oxymetry.
BAM31MOA	Modeling and analysis of brain activity	Z,ZK	6
BAM31NPG	Neurophysiology	Z,ZK	6
BAM31ZAS	Analog Signal Processing	Z,ZK	6
	rith analog input-output blocks for signal transmission and processing. They discussed circuit solution of amplifiers and filters, including t		-
	nt. Students learn the circuit concepts and possibilities for solving the contemporary analogue structures. The second part of the cour	• .	
implementa	ation of analog filters, including discrete-time circuits. The conclusion is devoted to the possibilities of computer optimization of electr	onic circuits and fi	ilters.
BAM33NIN	Neuroinformatics	Z,ZK	6
	ics Course concentrates on modelling of neurons, stochastic learning on cellular level, information coding and decoding in brain and si	1 '	ng. Examples
	from clinical practices are provided throughout the course. The labs focus on signal neuron analysis from human and animal b	- '	
BAM33ZMO	Medical Image Processing	Z.ZK	6
	s the most used advanced image analysis methods, with emphasis on images from medical and biological modalities, from microsco	,	
	including time sequences.	p,,,	,,
BAM33ZSL	Medical Imaging Systems	Z,ZK	6
	the principles, design and properties of currently used medical imaging devices. We shall deal with 2D microscopic, X-ray and ultrasou	1	_
	ich as Doppler ultrasound. We will also study tomographic (3D) imaging systems: computed tomography (CT), magnetic resonance ima		-
aa (a. 100a 10p.00 0a	MRI (fMRI) and nuclear imaging methods (PET,SPECT). For more information see https://cw.fel.cvut.cz/wiki/courses/zsl	.99 ()	9
BAM36BIN	Bioinformatics	Z,ZK	6
BAM38KLS	Construction of Medical Systems	Z,ZK	6
BDIP30	Diploma Thesis	Z	30
	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or	I	
•	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh		-
BE4M33SSU	Statistical Machine Learning	Z,ZK	6
	cal machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pr	1 '	1
	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	_	
	d estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	· ·	
	how they can be learned by those concepts.	3	
BMPROJ6	Diploma Project	Z	6
		_	

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-08-08, time 11:45.