Study plan

Name of study plan: Medical Electronics and Bioinformatics - Specialization **Bioinformatics**

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Medical Electronics and Bioinformatics

Type of study: Follow-up master full-time

Required credits: 114 Elective courses credits: 6 Sum of credits in the plan: 120

Note on the plan:

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 60

The role of the block: P

Code of the group: 2018 MBIOEP

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 30 credits

Requirement courses in the group: In this group you have to complete 5 courses

Credits in the group: 30 Note on the group:

machine learning and data mining courses.

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEAM31BSG	Biological signals Petr Ježdík, Roman mejla, Michal Novotný Roman mejla Roman mejla (Gar.)	Z,ZK	6	2P+2L	L	Р
BEMPROJ6	Diploma Project Roman mejla, Petr Pošík, Jan Kybic, Vratislav Fabián Petr Pošík Roman mejla (Gar.)	Z	6	0p+6s	Z,L	Р
BEAM33ZSL	Medical Imaging Systems Jan Kybic, Vít Herynek, André Sopczak Jan Kybic Jan Kybic (Gar.)	Z,ZK	6	2P+2C	L	Р
BEAM31LET	Medical Instrumentation and Devices Jan Havlík Jan Havlík (Gar.)	Z,ZK	6	2P+2L	Z	Р
BE4M36SAN	Statistical data analysis Jií Kléma Jií Kléma Jií Kléma (Gar.)	Z,ZK	6	2P+2C	Z	Р

Characteristics of	the courses of this group of Study Plan: Code=2018_MBIOEP Name=Compulsory subjects	s of the prog	ramme
BEAM31BSG	Biological signals	Z,ZK	6
The course is focused to	o the native and evoked biosignals used in clinical medicine and current methods of capturing, processing, recording and eva	aluating in the tim	e and frequency
domains. For important	biological signals, the students are introduced with their genesis, and nature and physiological characteristics of the signals	required for const	ruction of
instruments. Students a	re introduced also with the physical and mathematical models. In laboratory exercises, students have the opportunity to captu	re their own biolo	gical signals and
their subsequent proces	ssing in MATLAB.		
BEMPROJ6	Diploma Project	Z	6
Independent work in the	form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be spe	cified by branch o	lepartment or
branch departments. Th	e project will be defended within the framework of a subject.		
BEAM33ZSL	Medical Imaging Systems	Z,ZK	6
The course covers the p	rinciples, design and properties of currently used medical imaging devices. We shall deal with 2D microscopic, X-ray and ultra	sound imaging sy	stems, including
advanced topics such as	s Doppler ultrasound. We will also study tomographic (3D) imaging systems: computed tomography (CT), magnetic resonance	imaging (MRI) inc	luding functional
MRI (fMRI) and nuclear	imaging methods (PET,SPECT). For more information see https://cw.fel.cvut.cz/wiki/courses/zsl		
BEAM31LET	Medical Instrumentation and Devices	Z,ZK	6
Students will study fund	amental principles applied within the modern medical devices and systems, esp. from the point of view of functional blocks an	d electronic circuit	s of diagnostical
and therapeutical medic	al equipments including electrocardiographs, electroencephalographs, bedside and central monitors, equipments for aneste	siology, intensive	and critical
healthcare, equipments	for clinical laboratory, electrostimulators, cardiostimulators and defibrilators, blood pressure and flow measurement (including	g dilution) and pu	lse oxymetry.
BE4M36SAN	Statistical data analysis	Z,ZK	6

This course builds on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly aims at multivariate statistical analysis and modelling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a purely statistical counterpart to

Code of the group: 2018_MBIOEDIP

Name of the group: Diploma Thesis

Requirement credits in the group: In this group you have to gain 30 credits Requirement courses in the group: In this group you have to complete 1 course

Credits in the group: 30 Note on the group:

	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP30	Diploma Thesis	Z	30	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MBIOEDIP Name=Diploma Thesis

BDIP30 Diploma Thesis

Z 30
Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will

be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.

Name of the block: Compulsory courses in the specialization

Minimal number of credits of the block: 30

The role of the block: PS

Code of the group: 2018_MBIOEPS1

Name of the group: Compulsory subjects of specialization - specialization Bioinformatics

Requirement credits in the group: In this group you have to gain 30 credits

Requirement courses in the group: In this group you have to complete 5 courses

Credits in the group: 30 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	PS
BEAM36BIN	Bioinformatics Jií Kléma Jií Kléma Jií Kléma (Gar.)	Z,ZK	6	2P+2C	L	PS
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	PS
BE4M36MBG	Molecular Biology and Genetics Martin Pospíšek Martin Pospíšek (Gar.)	Z,ZK	6	3P+1C	L	PS
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PS

Characteristics of the courses of this group of Study Plan: Code=2018_MBIOEPS1 Name=Compulsory subjects of specialization - specialization Bioinformatics

BE4M33PAL	Advanced Algorithms	Z,ZK	6
Basic graph algorithms	$and \ graph \ representation. \ Combinatorial \ algorithms. \ Application \ of formal \ languages \ theory \ in \ computer \ science \ - \ pattern \ mark \ pattern \ $	atching.	
BEAM36BIN	Bioinformatics	Z,ZK	6
BE4M35KO	Combinatorial Optimization	Z,ZK	6

The goal is to show the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term operations research). Following the courses on linear algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programming, heuristics, approximation algorithms and state space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, planning of human resources, scheduling in production lines, message routing, scheduling in parallel computers.

BE4M36MBG	Molecular Biology and Genetics	Z,ZK	6
BE4M33SSU	Statistical Machine Learning	Z,ZK	6

The aim of statistical machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some prior knowledge about the task. This includes typical tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning concepts such as risk minimisation, maximum likelihood estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification and regression and to show how they can be learned by those concepts.

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 24

The role of the block: PV

Code of the group: 2018_MBIOEPPV1

Name of the group: Compulsory elective subjects of the programme

Requirement credits in the group: In this group you have to gain 24 credits

Requirement courses in the group: In this group you have to complete 4 courses

Credits in the group: 24 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEAM31ADA	Adaptive signal processing	Z,ZK	6	2P+2C	Z	PV
BEAM31ZAS	Analog Signal Processing Ji í Hospodka Ji í Hospodka (Gar.)	Z,ZK	6	2P+2C	L	PV
BEAM17EPM	Applications of Electromagnetic Fields in Medicine Jan Vrba Jan Vrba (Gar.)	Z,ZK	6	2P+2L	L	PV
BEAM31AOL	Applied optoelectronics in medicine Jan Havlík	Z,ZK	6	2P+2C	L	PV
BEAM02BIO	Biosensors Bohuslav Rezek Bohuslav Rezek (Gar.)	Z,ZK	6	2P+2L	Z	PV
BE4M33MPV	Computer Vision Methods Georgios Tolias, Ji í Matas, Jan ech, Dmytro Mishkin Ond ej Drbohlav Ji í Matas (Gar.)	Z,ZK	6	2P+2C	L	PV
BEAM38KLS	Construction of Medical Systems Jan Holub Jan Holub (Gar.)	Z,ZK	6	2P+2L	Z	PV
BE2M31DSPA	Digital Signal Processing Petr Pollák Petr Pollák Petr Pollák (Gar.)	Z,ZK	6	2P+2C	Z	PV
BEAM17EMC	Introduction to Electromagnetic Compatibility Tomáš Ko ínek Tomáš Ko ínek Tomáš Ko ínek (Gar.)	Z,ZK	6	2P+2L	Z	PV
ВЕАМ33ZMO	Medical Image Processing Jan Kybic, Oleksandr Shekhovtsov Jan Kybic Jan Kybic (Gar.)	Z,ZK	6	2P+2C	Z	PV
ВЕАМ31МОА	Modeling and analysis of brain activity Jaroslav Hlinka Jaroslav Hlinka (Gar.)	Z,ZK	6	2P+2C	Z	PV
BEAM33MOS	Modeling and Simulation Petr Pošík	Z,ZK	6	2P+2C	Z	PV
BEAM33NIN	Neuroinformatics Giulia D'Angelo, Karla Št pánová, Ján Antolík, Daniel Novák, Eduard Bakštein, David Kala, Ji í Hammer Daniel Novák Daniel Novák (Gar.)	Z,ZK	6	2P+2C	L	PV
BEAM31NPG	Neurophysiology P emysl Jiruška, Helena Pivo ková P emysl Jiruška P emysl Jiruška (Gar.)	Z,ZK	6	2P+2C	Z	PV
BEAM02FPT	Physics for Diagnostics and Therapy Vratislav Fabián, Jaroslav Jíra Vratislav Fabián Vratislav Fabián (Gar.)	Z,ZK	6	2P+2L		PV
BE4M36SMU	Symbolic Machine Learning Filip Železný, Ond ej Kuželka, Gustav Šír Ond ej Kuželka Ond ej Kuželka (Gar.)	Z,ZK	6	2P+2C	L	PV

Characteristics of the courses of this group of Study Plan: Code=2018 MBIOEPPV1 Name=Compulsory elective subjects of the programme

BEAM31ADA Adaptive signal processing Z,ZK This course provides a basic discourse on adaptive algorithms for filtering, decorrelation, separation and beamforming. The course explains adaptive algorithms for estimation and prediction, including analysis, implementation and practical applications. Next, it describes the algorithms for adaptive decorrelation and separation of multidimensional signals. Last, the course provides analysis of adaptive beamforming techniques.

BEAM31ZAS Analog Signal Processing

The course deals with analog input-output blocks for signal transmission and processing. They discussed circuit solution of amplifiers and filters, including their design process, simulation and measurement. Students learn the circuit concepts and possibilities for solving the contemporary analogue structures. The second part of the course describes the design and implementation of analog filters, including discrete-time circuits. The conclusion is devoted to the possibilities of computer optimization of electronic circuits and filters

Applications of Electromagnetic Fields in Medicine

The major aim of these lectures is to give to students a basic overview of biophysical aspects of EM fields in different biological systems, including an overview of microwave applications in medicine. Safety limits, clinical usage of EM field effects on biological systems, microwave hyperthermia, measurement of dielectric parameters of biological tissues, EM exposure of mobile phone users, magnetic resonance imaging, interaction of optical radiation with biological tissue.

BEAM31AOL	Applied optoelectronics in medicine	Z,ZK	6
BEAM02BIO	Biosensors	Z,ZK	6

This course introduces the physical, electronic, biological principles of biosensors and provides information on past, present and future technologies. Various mechanisms and sensor concepts for specific applications (such as detection of glucose, urea, proteins, cells, bacteria, etc.) are explained. In addition, the course introduces the use of modern nanostructures and nanomaterials in biosensors to achieve reliable and sensitive devices for diagnosis at the point of care, in food safety or environmental monitoring. We will also discuss current challenges and future perspectives for various applications of biosensors.

BE4M33MPV Computer Vision Methods

Z,ZK

The course covers selected computer vision problems: search for correspondences between images via interest point detection, description and matching, image stitching, detection, recognition and segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

BEAM38KLS Construction of Medical Systems

General principles and design and construction of medical devices and systems. Technical standards and requirements for the design, construction and operation of medical electrical appliances. Classification classes of instruments. Electromagnetic Compatibility of Medical Devices. Modern component base. Design and construction of basic blocks of medical

BE2M31DSPA Digital Signal Processing

The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing): disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at http://noel.feld.cvut.cz/vyu/be2m31dspa http://noel.feld.cvut.cz/vyu/be2m31dspa http://noel.feld.cvut.cvut.cz/vyu/be2m31dspa http://noel.feld.cvut.cvut.cvut.cvut.cvu

BEAM17EMC Introduction to Electromagnetic Compatibility Z,ZK

6

The course dwells on problems of electromagnetic compatibility. Students obtain the basic knowledges in the field of electromagnetic compatibility - electromagnetic interference, susceptibility and testing methods. The course leads to gain professional skills in the field of electrical engineering.

BEAM33ZMO Medical Image Processing Z,ZK

This subject describes algorithms for digital image processing of 2D and 3D images, with emphasis on biomedical applications. We shall therefore concentrate on the most often used techniques in medical image processing: segmentation, registration, and classification. The methods will be illustrated by a range of examples on medical data. The students will implement some of the algorithms during the practice sessions. Because of the very large overlap between courses A6M33ZMO and A4M33ZMO, the courses will be taught together this vear

BEAM31MOA Modeling and analysis of brain activity BEAM33MOS Modeling and Simulation

Z,ZK Z,ZK 6

The modelling techniques being frequently used in biomedical engineering and corresponding software tools; Matlab-Simulink, Modelica, Techniques of modelling and processes associated with them. Types of models, continuous and discrete time models, linear and nonlinear models with lumped parameters, models and their implementation in program environment. Formalization and model creation for a selected system, its identification, verification and interpretation, Equilibrium states (homeostasis) and their inquiry by simulation, Models of open and feedback systems. Use of fuzzy-neuronal models in biomedicine. Models of separate systems and whole constellations being defined in biomedical engineering. Models of cellular and physiological control, population models. Application of models for artificial organs production.

BEAM33NIN Neuroinformatics Z.ZK

6

The Neuroinformatics Course concentrates on modelling of neurons, stochastic learning on cellular level, information coding and decoding in brain and single unit processing. Examples from clinical practices are provided throughout the course. The labs focus on signal neuron analysis from human and animal brain.

BEAM31NPG Neurophysiology Z.ZK

The course will provide an introduction to the structure and function of the neural system and the mechanisms behind major diseases of the human brain. It will combine topics from various disciplines ranging from electrophysiology, neurobiology, neuroanatomy, neurology, psychiatry to biophysics and bioengineering. Understanding the principles how the human brain works in health and disease represents a crucial prerequisite for the development and implementation of modern engineering technologies to better diagnose and treat brain disorders

BEAM02FPT Physics for Diagnostics and Therapy Z,ZK

In this course, students will be introduced to the problems of locomotive organs diseases and musculoskeletal pain in the first seven lectures. Great space is devoted to electrotherapeutic methods, therapeutic ultrasound and phototherapy. Furthermore, advanced neurorehabilitation methods, especially transcranial brain stimulation methods (repetitive transcranial magnetic stimulation of the brain - rTMS, transcranial electrical stimulation of the brain - tDCS and electroconvulsive therapy - ECT) are discussed. In the second half of the semester, attention is paid to the possibilities of using ionizing electromagnetic fields in medical diagnostics and therapy (eg X-ray, proton therapy, radiotherapy, etc.).

Symbolic Machine Learning

6

This course consists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its environment, also known as reinforcement learning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inference. The third part will cover fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an introduction to several topics from the computational learning theory, including the online and batch learning settings.

Name of the block: Elective courses Minimal number of credits of the block: 0

The role of the block: V

Code of the group: 2018_MBIOEVOL Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group:

Credits in the group: 0

Note on the group: ~Student can choose arbitrary subject of the magister's program (EEM - Electrical Engineering, Power Engineering and Management, EK - Electronics and Communications, KYR - Cybernetics and Robotics, OI - Open Informatics, OES - Open Electronics Systems) which is not part of his curriculum. Student can choose with consideration of recommendation of the branch guarantee. You can find a selection of optional courses organized by the departments on the web site

http://www.fel.cvut.cz/cz/education/volitelne-predmety.html

List of courses of this pass:

Code	Name of the course	Completion	Credits
BDIP30	Diploma Thesis	Z	30
	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or l	-	
	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehense.		
BE2M31DSPA		Z,ZK	6
	overview about basic methods of digital signal processing and their applications (examples from speech and biological signal proces rharacteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design		-
systems, signal c	frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be foun		i ume anu
	href=http://noel.feld.cvut.cz/vyu/be2m31dspa>http://noel.feld.cvut.cz/vyu/be2m31dspa .		
BE4M33MPV	Computer Vision Methods	Z,ZK	6
	selected computer vision problems: search for correspondences between images via interest point detection, description and matchi	· '	g, detection
recognition and	segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This	s course is also pa	rt of the
inter-university pr	ogramme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field	of artificial intellige	ence. More
	information is available at https://prg.ai/minor.		
BE4M33PAL	Advanced Algorithms	Z,ZK	6
	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science -		
BE4M33SSU	Statistical Machine Learning carning sto develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	Z,ZK	6
	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	-	
	d estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	•	
	how they can be learned by those concepts.	Ü	
BE4M35KO	Combinatorial Optimization	Z,ZK	6
he goal is to show	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term of	, perations research	n). Followin
	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmir		
algorithms and s	tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl	anning of human r	esources,
DE 4140014D0	scheduling in production lines, message routing, scheduling in parallel computers.	7 71	
BE4M36MBG	Molecular Biology and Genetics	Z,ZK	6
BE4M36SAN	Statistical data analysis	Z,ZK	6
	on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly		
analysis and mode	Illing, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a property of the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a property of the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a property of the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a property of the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a property of the methods that help to understand, interpret, visualize and model potentially high-dimensional data.	ourely statistical co	unterpart to
DE 4NAOCONALI	machine learning and data mining courses.	7 71/	
BE4M36SMU	Symbolic Machine Learning sists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its	Z,ZK	6 known as
	earning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inferen		
	ics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally	•	
	introduction to several topics from the computational learning theory, including the online and batch learning settings.		
BEAM02BIO	Biosensors	Z,ZK	6
	ices the physical, electronic, biological principles of biosensors and provides information on past, present and future technologies. Va		
	ic applications (such as detection of glucose, urea, proteins, cells, bacteria, etc.) are explained. In addition, the course introduces the		
and nanomateria	Is in biosensors to achieve reliable and sensitive devices for diagnosis at the point of care, in food safety or environmental monitoring	. We will also discu	iss current
DEAMOOEDT	challenges and future perspectives for various applications of biosensors.	7 71/	
BEAM02FPT	Physics for Diagnostics and Therapy ents will be introduced to the problems of locomotive organs diseases and musculoskeletal pain in the first seven lectures. Great space i	Z,ZK	6
	eutic ultrasound and phototherapy. Furthermore, advanced neurorehabilitation methods, especially transcranial brain stimulation met		-
	on of the brain - rTMS, transcranial electrical stimulation of the brain - tDCS and electroconvulsive therapy - ECT) are discussed. In the		
_	tion is paid to the possibilities of using ionizing electromagnetic fields in medical diagnostics and therapy (eg X-ray, proton therapy, ra		
BEAM17EMC	Introduction to Electromagnetic Compatibility	Z,ZK	6
	ls on problems of electromagnetic compatibility. Students obtain the basic knowledges in the field of electromagnetic compatibility - e	lectromagnetic inte	erference,
	susceptibility and testing methods. The course leads to gain professional skills in the field of electrical engineering.		
BEAM17EPM	Applications of Electromagnetic Fields in Medicine	Z,ZK	6
	lese lectures is to give to students a basic overview of biophysical aspects of EM fields in different biological systems, including an over		
in medicine. Safet	y limits, clinical usage of EM field effects on biological systems, microwave hyperthermia, measurement of dielectric parameters of bi	ological tissues, El	M exposure
DEAMOAADA	of mobile phone users, magnetic resonance imaging, interaction of optical radiation with biological tissue.	7 71/	
BEAM31ADA	Adaptive signal processing des a basic discourse on adaptive algorithms for filtering, decorrelation, separation and beamforming. The course explains adaptive a	Z,ZK	6
•	des a basic discourse on adaptive algorithms for littering, decorrelation, separation and beamforming. The course explains adaptive a ng analysis, implementation and practical applications. Next, it describes the algorithms for adaptive decorrelation and separation of r	-	
r. oa.o.o., moiduli	the course provides analysis of adaptive beamforming techniques.		J LUSI,
BEAM31AOL	Applied optoelectronics in medicine	Z,ZK	6
BEAM31BSG	Biological signals	Z,ZK	6
	sed to the native and evoked biosignals used in clinical medicine and current methods of capturing, processing, recording and evalua		_
	portant biological signals, the students are introduced with their genesis, and nature and physiological characteristics of the signals	_	
nstruments. Stude	nts are introduced also with the physical and mathematical models. In laboratory exercises, students have the opportunity to capture t	heir own biological	signals an
	their subsequent processing in MATLAB		

their subsequent processing in MATLAB.

BEAM31LET	Medical Instrumentation and Devices	Z,ZK	6
Students will study fundamen	tal principles applied within the modern medical devices and systems, esp. from the point of view of functional blocks and ele	ctronic circuits of	diagnostica
and therapeutical medical	equipments including electrocardiographs, electroencephalographs, bedside and central monitors, equipments for anestesic	ology, intensive a	nd critical
healthcare, equipments for	clinical laboratory, electrostimulators, cardiostimulators and defibrilators, blood pressure and flow measurement (including d	ilution) and pulse	e oxymetry.
BEAM31MOA	Modeling and analysis of brain activity	Z,ZK	6
BEAM31NPG	Neurophysiology	Z,ZK	6
The course will provide an ir	troduction to the structure and function of the neural system and the mechanisms behind major diseases of the human brai	n. It will combine	topics from
various disciplines ranging fro	om electrophysiology, neurobiology, neuroanatomy, neurology, psychiatry to biophysics and bioengineering. Understanding t	he principles how	v the human
brain works in health and di	sease represents a crucial prerequisite for the development and implementation of modern engineering technologies to bet	ter diagnose and	treat brain
	disorders.		
BEAM31ZAS	Analog Signal Processing	Z,ZK	6
The course deals with analog	input-output blocks for signal transmission and processing. They discussed circuit solution of amplifiers and filters, including th	eir design proces	s, simulation
and measurement. Student	s learn the circuit concepts and possibilities for solving the contemporary analogue structures. The second part of the cours	e describes the o	design and
implementation of an	alog filters, including discrete-time circuits. The conclusion is devoted to the possibilities of computer optimization of electror	nic circuits and fil	ters.
BEAM33MOS	Modeling and Simulation	Z,ZK	6
The modelling techniques	peing frequently used in biomedical engineering and corresponding software tools: Matlab-Simulink, Modelica. Techniques o	of modelling and	processes
associated with them. Type	es of models, continuous and discrete time models, linear and nonlinear models with lumped parameters, models and their i	mplementation ir	n program
environment. Formalization a	nd model creation for a selected system, its identification, verification and interpretation. Equilibrium states (homeostasis) a	nd their inquiry b	y simulation.
Models of open and feedbac	s systems. Use of fuzzy-neuronal models in biomedicine. Models of separate systems and whole constellations being define	ed in biomedical e	engineering.
	Models of cellular and physiological control, population models. Application of models for artificial organs production.		
BEAM33NIN	Neuroinformatics	Z,ZK	6
	concentrates on modelling of neurons, stochastic learning on cellular level, information coding and decoding in brain and sing		ıg. Examples
	n clinical practices are provided throughout the course. The labs focus on signal neuron analysis from human and animal br	ain.	
BEAM33ZMO	Medical Image Processing	Z,ZK	6
,	hms for digital image processing of 2D and 3D images, with emphasis on biomedical applications. We shall therefore conce		
•	ge processing: segmentation, registration, and classification. The methods will be illustrated by a range of examples on med		
implement some of the algor	thms during the practice sessions. Because of the very large overlap between courses A6M33ZMO and A4M33ZMO, the co	ourses will be tau	ight together
	this year.		
BEAM33ZSL	Medical Imaging Systems	Z,ZK	6
The course covers the princip	les, design and properties of currently used medical imaging devices. We shall deal with 2D microscopic, X-ray and ultrasour	nd imaging syster	ns, including
advanced topics such as Dop	oler ultrasound. We will also study tomographic (3D) imaging systems: computed tomography (CT), magnetic resonance imag	ing (MRI) includi	ng functional
	MRI (fMRI) and nuclear imaging methods (PET,SPECT). For more information see https://cw.fel.cvut.cz/wiki/courses/zsl		
BEAM36BIN	Bioinformatics	Z,ZK	6
BEAM38KLS	Construction of Medical Systems	Z,ZK	6
	n and construction of medical devices and systems. Technical standards and requirements for the design, construction and c	•	cal electrical
appliances. Classification of	lasses of instruments. Electromagnetic Compatibility of Medical Devices. Modern component base. Design and constructior	of basic blocks	of medical
	devices.		
		7	6
BEMPROJ6	Diploma Project	Z	6
	Diploma Project n of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specifi	_	-

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-08-11, time 11:45.