Study plan

Name of study plan: Erasmus Mundus Master Course - SpaceMaster 2020-22

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time

Required credits: 120 Elective courses credits: 0 Sum of credits in the plan: 120

Note on the plan:

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 98

The role of the block: P

Code of the group: 2020_SPACEMASTER_P

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 98 credits

Requirement courses in the group: In this group you have to complete 10 courses

Credits in the group: 98 Note on the group:

BE3M35SPI

Space Instruments

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7	2P+2L	Z	Р
BE3M35DIP	Diploma Thesis	Z	30	22S	L	Р
BE3M35IDP	Individuální projekt	Z	8	0P+6S	Z	Р
BE3M35ORC	Optimal and robust control design	Z,ZK	8	2P+2C	L	Р
BE3M35SPC	Space Communication	Z,ZK	8	2P+2S	Z	Р
BE3M35SPI	Space Instruments	Z,ZK	8	2P+2S	L	Р
BE3M35SPP	Space Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7	4P+2C	Z	Р
BE3M35SSD	Spacecraft System	Z,ZK	8	2P+2S	Z	Р
BE3M35TSS	The Solar System	Z,ZK	7	2P+2S	Z	Р

Characteristics of the courses of this group of Study Plan: Code=2020_SPACEMASTER_P Name=Compulsory subjects of the programme BE3M35CSA | Control Systems for Aircraft and Spacecraft | Z,ZK | 7

_,	•				
Linear Systems.	System Stability,				
c Processes.					
Z	30				
or her branch of s	tudy, which will				
nsive final examina	ation.				
Z	8				
cified by branch o	lepartment or				
Z,ZK	8				
ational design skill	s. Unifying idea				
of the course is that of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranteed. Minimizing H2 norm leads					
to the celebrated LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness against uncertainties in the model.					
Mu-synthesis as an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tool for robust control design.					
Standing a little bit aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the course, introduction to the topic					
al tool for solving	all the previously				
introduced tasks in optimal and robust control.					
Z,ZK	8				
	ational design skill ranteed. Minimizin ranteed. Minimizin st uncertainties in I tool for robust co he course, introdu nal tool for solving				

Z,ZK

8

BE3M35SPP	Space Physics	Z,ZK	7
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7
BE3M35SSD	Spacecraft System	Z,ZK	8
BE3M35TSS	The Solar System	Z,ZK	7

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 22

The role of the block: PV

Code of the group: 2020_SPACEMASTER_PV Name of the group: Compulsory optionally subjects

Requirement credits in the group: In this group you have to gain at least 22 credits (at most 40)

Requirement courses in the group: In this group you have to complete at least 3 courses (at most 6)

Credits in the group: 22 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35ELS	Electronics in Space	Z,ZK	8	2P+2S	L	PV
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7	2P+2S	Z	PV
BE3M35PAT	Polar Atmosphere	Z,ZK	8	2P+2S	L	PV
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7	2P+2S	L	PV
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	PV
BE3M35SIS	Swedish for International Students 1	Z,ZK	3	2P+2S	Z	PV

Characteristics of the courses of this group of Study Plan: Code=2020_SPACEMASTER_PV Name=Compulsory optionally subjects

BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7
BE3M35PAT	Polar Atmosphere	Z,ZK	8
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7
BE3M35SIS	Swedish for International Students 1	Z,ZK	3

List of courses of this pass:

Code	Name of the course	Completion	Credits
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7
System Approach.	Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Lir	ear Systems. Syst	em Stability,
Uncertai	nty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of St	ochastic Processes	S.
BE3M35DIP	Diploma Thesis	Z	30
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or	her branch of study	, which will
be specified b	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final exami	nation.
BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35IDP	Individuální projekt	Z	8
Independent work	in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be speci	, fied by branch dep	artment or
	branch departments. The project will be defended within the framework of a subject.		
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7
BE3M35ORC	Optimal and robust control design	Z,ZK	8
This advanced cou	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computatio	nal design skills. U	nifying idea
of the course is that	of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarant	eed. Minimizing H2	norm leads
to the celebrated	LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains	t uncertainties in th	ne model.
Mu-synthesis as	an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull t	ool for robust contr	ol design.
Standing a little bit	aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c	ourse, introduction	to the topic
of semidefinite prog	ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational t	ool for solving all th	e previously
	introduced tasks in optimal and robust control.		
BE3M35PAT	Polar Atmosphere	Z,ZK	8
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7
BE3M35SEL	Spacecraft Environment Interactions	7 7K	7

BE3M35SIS	Swedish for International Students 1	Z,ZK	3
BE3M35SPC	Space Communication	Z,ZK	8
BE3M35SPI	Space Instruments	Z,ZK	8
BE3M35SPP	Space Physics	Z,ZK	7
BE3M35SSD	Spacecraft System	Z,ZK	8
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7
BE3M35TSS	The Solar System	Z,ZK	7

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-11-17, time 13:40.