Study plan

Name of study plan: Erasmus Mundus Master Course - SpaceMaster 2020-22

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time Required credits: 120 Elective courses credits: 0 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 98 The role of the block: P

Code of the group: 2020_SPACEMASTER_P Name of the group: Compulsory subjects of the programme Requirement credits in the group: In this group you have to gain 98 credits Requirement courses in the group: In this group you have to complete 10 courses Credits in the group: 98 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7	2P+2L	Z	Р
BE3M35DIP	Diploma Thesis	Z	30	22S	L	Р
BE3M35IDP	Individuální projekt	Z	8	0P+6S	Z	Р
BE3M35ORC	Optimal and robust control design	Z,ZK	8	2P+2C	L	Р
BE3M35SPC	Space Communication	Z,ZK	8	2P+2S	Z	Р
BE3M35SPI	Space Instruments	Z,ZK	8	2P+2S	L	Р
BE3M35SPP	Space Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7	4P+2C	Z	Р
BE3M35SSD	Spacecraft System	Z,ZK	8	2P+2S	Z	Р
BE3M35TSS	The Solar System	Z,ZK	7	2P+2S	Z	Р

Characteristics of the courses of this group of Study Plan: Code=2020_SPACEMASTER_P Name=Compulsory subjects of the programme

BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7		
System Approach. Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Linear Systems. System Stability,					
Uncertainty and Robust	ness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of Stochastic	c Processes.			
BE3M35DIP	Diploma Thesis	Z	30		
Independent final comp	rehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his of	or her branch of s	tudy, which will		
be specified by branch of	department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehen	sive final examination	ation.		
BE3M35IDP	Individuální projekt	Z	8		
Independent work in the	form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be spe	cified by branch c	lepartment or		
branch departments. Th	e project will be defended within the framework of a subject.				
BE3M35ORC	Optimal and robust control design	Z,ZK	8		
This advanced course of	n control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computa	tional design skill	s. Unifying idea		
of the course is that of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranteed. Minimizing H2 norm leads					
to the celebrated LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness against uncertainties in the model.					
Mu-synthesis as an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tool for robust control design.					
Standing a little bit aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the course, introduction to the topic					
of semidefinite programming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational tool for solving all the previously					
introduced tasks in optimal and robust control.					
BE3M35SPC	Space Communication	Z,ZK	8		
BE3M35SPI	Space Instruments	Z,ZK	8		

BE3M35SPP	Space Physics	Z,ZK	7
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7
BE3M35SSD	Spacecraft System	Z,ZK	8
BE3M35TSS	The Solar System	Z,ZK	7

Name of the block: Compulsory elective courses Minimal number of credits of the block: 22 The role of the block: PV

Code of the group: 2020_SPACEMASTER_PV Name of the group: Compulsory optionally subjects Requirement credits in the group: In this group you have to gain at least 22 credits (at most 40) Requirement courses in the group: In this group you have to complete at least 3 courses (at most 6) Credits in the group: 22

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35ELS	Electronics in Space	Z,ZK	8	2P+2S	L	PV
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7	2P+2S	Z	PV
BE3M35PAT	Polar Atmosphere	Z,ZK	8	2P+2S	L	PV
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7	2P+2S	L	PV
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	PV
BE3M35SIS	Swedish for International Students 1	Z,ZK	3	2P+2S	Z	PV

Characteristics of the courses of this group of Study Plan: Code=2020_SPACEMASTER_PV Name=Compulsory optionally subjects

BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7
BE3M35PAT	Polar Atmosphere	Z,ZK	8
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7
BE3M35SIS	Swedish for International Students 1	Z,ZK	3

List of courses of this pass:

Code	Name of the course	Completion	Credits
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7
System Approach.	Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Lin	ear Systems. Syste	em Stability,
Uncertai	nty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of Stronger 2014	ochastic Processes	š.
BE3M35DIP	Diploma Thesis	Z	30
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or I	her branch of study	, which will
be specified b	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examir	nation.
BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35IDP	Individuální projekt	Z	8
Independent work	in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be speci	fied by branch dep	artment or
	branch departments. The project will be defended within the framework of a subject.		
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7
BE3M35ORC	Optimal and robust control design	Z,ZK	8
This advanced cou	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computatio	nal design skills. U	nifying idea
of the course is that	t of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante	eed. Minimizing H2	norm leads
	LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains		
	an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull t		
-	aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c		-
of semidefinite prog	ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to	ool for solving all th	e previously
	introduced tasks in optimal and robust control.		
BE3M35PAT	Polar Atmosphere	Z,ZK	8
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7

BE3M35SIS	Swedish for International Students 1	Z,ZK	3
BE3M35SPC	Space Communication	Z,ZK	8
BE3M35SPI	Space Instruments	Z,ZK	8
BE3M35SPP	Space Physics	Z,ZK	7
BE3M35SSD	Spacecraft System	Z,ZK	8
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7
BE3M35TSS	The Solar System	Z,ZK	7

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-15, time 10:51.