Study plan

Name of study plan: Stavební inženýrství - vodní hospodá ství a vodní stavby

Faculty/Institute/Others:

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Civil Engineering - Water Management and Water Structures

Type of study: Follow-up master full-time

Required credits: 90 Elective courses credits: 0 Sum of credits in the plan: 90

Note on the plan: platí pro nástup od akad. roku 2023/24

Name of the block: Compulsory courses Minimal number of credits of the block: 40

The role of the block: Z

Code of the group: NV20230100

Name of the group: Stavební inženýrství - vodní hospodá ství a vodní stavby, 1. semestr

Requirement credits in the group: In this group you have to gain at least 20 credits

Requirement courses in the group: In this group you have to complete at least 4 courses

Credits in the group: 20 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
141APHD	Applied Hydrology Jaromír Dušek, Jana Votrubová, Tomáš Vogel, Michal Dohnal Michal Dohnal Jaromír Dušek (Gar.)	Z,ZK	5	2P+2C	Z	Z
141HY3V	Hydraulics 3 Václav Matoušek, Jan Krupi ka, Mikoláš Kesely, Daniel Mattas Václav Matoušek Václav Matoušek (Gar.)	Z,ZK	5	2P+2C	Z	Z
142VHSO	Water-management Schemes Pavel Fošumpaur Martin Horský Pavel Fošumpaur (Gar.)	Z,ZK	5	3P+2C	Z	Z
143HPVO	Groundwater Hydraulics Martin Šanda, Martina Sobotková Martin Šanda Martin Šanda (Gar.)	Z,ZK	5	2P+2C	Z	Z

Characteristics of the courses of this group of Study Plan: Code=NV20230100 Name=Stavební inženýrství - vodní hospodá ství a vodní stavby, 1. semestr

141APHD	Applied Hydrology	Z,ZK	5				
Advanced hydrology co	Advanced hydrology course. Quantitative description of hydrological processes. Methods of measurement and data evaluation. Deterministic and stochastic modeling in hydrology.						
141HY3V	Hydraulics 3	Z,ZK	5				
Flow of real liquid (mat	Flow of real liquid (mathematical modelling, Navier-Stokes equations, turbulence). Dimensional analysis and dynamic similarity. Unsteady flow (waves and transients). Flow structure						
and velocity distribution. Flow around solid bodies (boundary layer, wake). Solid particles in quiescent and flowing liquid. Non-Newtonian flow. Flow in pump-pipeline systems. Application							
of momentum principle	to water jets and pump/turbine impellers.						

142VHSO Water-management Schemes Z,ZK 5 The course includes an explanation of system methods for the design and management of water management systems. System definition, system representation, mathematical models. Fundamentals of programming. Optimization methods. Probabilistic methods. Basic types of probability distributions. Statistical derivation of design values of hydrological variables.

Synthetic series modelling methods. Simulation models. Artificial intelligence methods. Operational management of water management systems.

143HPVO Z,ZK **Groundwater Hydraulics** The course deals with the problem of groundwater flow in saturated rock environments. The introduction of the course is devoted to the theoretical background and mathematical description of groundwater flow. The next part is devoted to simplified solutions of basic problems - flow through phreatic and confined aquifers, seepage through an earth block, flow in the vicinity of wells. At the end of the semester, students will get acquainted with the method of numerical modelling of groundwater flow, using specialized software to solve an

individual problem.

Code of the group: NV20230200

Name of the group: Stavební inženýrství - vodní hospodá ství a vodní stavby, 2. semestr

Requirement credits in the group: In this group you have to gain at least 20 credits

Requirement courses in the group: In this group you have to complete at least 4 courses

Credits in the group: 20 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
142PRVD	Management of Hydraulic Schemes Pavel Fošumpaur, Petr Nowak, Martin Horský, Ladislav Satrapa, Martin Králík, Miroslav Brou ek, Milan Zukal, Petra Nešvarová Chvojková Milan Zukal Ladislav Satrapa (Gar.)	Z,ZK	5	3P+2C	L	Z
144CIV	Water quality Ivana Kabelková Ivana Kabelková (Gar.)	Z,ZK	5	2P+2C	L	Z
144OUP	Urban drainage Ivana Kabelková, David Stránský Ivana Kabelková David Stránský (Gar.)	Z,ZK	5	2P+2C	L	Z
144MVSO	Urban Water Management Modelling Ivana Kabelková, David Stránský, Bohumil Š astný, Kate ina Slaví ková, Jaroslav Pollert Bronislava Rohanová Bohumil Š astný (Gar.)	Z,ZK	5	2P+2C	L	Z

Characteristics of stavby, 2. semestr	the courses of this group of Study Plan: Code=NV20230200 Name=Stavební inženýrství - vo	dní hospodá	ství a vodní
142PRVD	Management of Hydraulic Schemes	Z,ZK	5
Organisational and tech	nical aspects of operation of water works in the Czech Republic, state administration of water works. Handling and operating	regulations. Cate	gorisation of
water works. Monitoring	and supervision of waterworks, waterworks failures and special floods. Reliability of water works. Issues of winter operation of str	eams, reservoirs	and waterworks,
ice phenomena and pro	cesses on streams, reservoirs and waterworks and management and active influence of the winter regime. Surface water qu	ality in streams ar	nd reservoirs,
	nent of water quality in reservoirs, temperature and oxygen regime of reservoirs. Operation of hydropower plants, surface wat		
1	nd pumped storage hydropower plants. Failure conditions and their treatment. Reconstruction and modernisation of dams, w	•	
1 .	ns, damages and risks. Relationship between hydraulic structure operations and the surrounding environment, environmenta	I impact assessm	ent of hydraulic
structures.			
144CIV	Water quality	Z,ZK	5
Composition of natural v	vaters. Types of water pollution, its effects and characteristics. Pollution sources. Running waters. Reservoirs. Water quality mon	itoring. Water qua	lity classification
in the Czech Republic.	Vater quality protection. Water quality modelling.		
144OUP	Urban drainage	Z,ZK	5
Field of urban drainage	Concepts and integrated assessment of the urban drainage system. Rainfall and rainfall data. Runoff from urban areas - effe	ctive rainfall, con	centration and
pollution. Discharge, po	llutant transport and transformation in the sewer system. Waste water treatment plant during rainfall. Urban streams. Protectiv	e measures - sto	rmwater
management, tanks. tre	atment, real time control. Measurement and monitoring.Basics of modelling and simulation programmes.		
144MVSO	Urban Water Management Modelling	Z,ZK	5
The course is focused of	n the application of specialized software for design, modeling and monitoring in water supply and sewerage and drainage.	·	

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 20

The role of the block: S

Code of the group: NV20230100_1

Name of the group: Stavební inženýrství - vodní hospodá ství a vodní stavby, PV p edm ty, 1. semestr

Requirement credits in the group: In this group you have to gain at least 10 credits

Requirement courses in the group: In this group you have to complete at least 2 courses

Credits in the group: 10

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
141YTHH	Methods of modelling in hydraulics nad hydrology Michal Dohnal, Vojt ch Bareš, Aleš Havlík, Tomáš Picek, Petr Sklená Michal Dohnal Michal Dohnal (Gar.)	KZ	5	4C	Z	S
142YGPV	Geotechnical problems of hydraulic structures Miroslav Brou ek, Petra Nešvarová Chvojková Miroslav Brou ek Miroslav Brou ek (Gar.)	Z,ZK	5	3P+1C	Z	S
143YOPO	Watershed Management Tomáš Dostál, Josef Krása, Petr Kavka Petr Kavka Tomáš Dostál (Gar.)	Z,ZK	5	2P+2C	Z	S
144YMIB	Urban engineering and balneology Bohumil Š astný, Filip Horký Filip Horký Bohumil Š astný (Gar.)	ZK	5	4P	Z	S

Characteristics of the courses of this group of Study Plan: Code=NV20230100_1 Name=Stavební inženýrství - vodní hospodá ství a vodní stavby, PV p edm ty, 1. semestr

141YTHH Methods of modelling in hydraulics nad hydrology ΚZ Mathematical modelling of 1D non-uniform flow in open channels. A constrained approach to modelling flow in a wide floodplain. Calibration of channel and inundation roughness. Initial and boundary conditions. 1D unsteady flow in open channels. Simulation of flood wave propagation in a river channel network. Modelling of 2D free-surface flow using the finite element method. Modelling of sediment movement in watercourses. Simulation of the temporal and spatial evolution of alluvial streambeds. Modelling of the rainfall-runoff process in a natural catchment and urbanized catchment.

142YGPV	Geotechnical problems of hydraulic structures	Z,ZK	5			
The subject of the course is the problems of failures and problems in the design and operation of hydraulic structures - weirs, dams, waterways and hydro power plants - with a focus						
on the foundation of structures. Students will be introduced to the solution of various geotechnical problems using examples of designed and operated water structures						
143YOPO	Watershed Management	Z,ZK	5			
Catchment managemer	nt basics at agriculturaly used landscape. Basic principles of hydrology, retention processes, soil erosion, sediment transport a	re presented. Also	negative effects			
of soil erosion and surface runoff generation and possible control measures design.						
144YMIB	Urban engineering and balneology	ZK	5			
The course is focused on the principles applied in solving elements of urban engineering such as water supply, sewerage, gas, urban furniture, etc. and on swimming pools and spas.						

Code of the group: NV20230200_1

Name of the group: Stavební inženýrství - vodní hospodá ství a vodní stavby, PV p edm ty, 2. semestr

Requirement credits in the group: In this group you have to gain at least 10 credits

Requirement courses in the group: In this group you have to complete at least 2 courses

Credits in the group: 10 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
141YRIM	River Morphology and Engineering Václav Matoušek, Petr Sklená Petr Sklená (Gar.)	ZK	5	2P+2C	L	S
142OKHH	Steel Structures in Hydraulic and Hydropower Engineering Petr Nowak, Martin Králík, Miroslav Brou ek, Ji í Sou ek Martin Králík Petr Nowak (Gar.)	Z,ZK	5	3P+1C	L	S
143YTPR	Transport Processes Milena Císlerová, David Zumr David Zumr Milena Císlerová (Gar.)	Z,ZK	5	2P+2C	L	S
144PUCV	Wastewater treatment Kate ina Slaví ková, Jaroslav Pollert Kate ina Slaví ková Jaroslav Pollert (Gar.)	Z,ZK	5	2P+2C	L	S

Characteristics of the courses of this group of Study Plan: Code=NV20230200_1 Name=Stavební inženýrství - vodní hospodá ství a vodní stavby, PV p edm ty, 2. semestr

141 Y R I I I R I V er Morphology and Engineering	ZΚ	5	
The course consists of two parts: 1. river engineering, where the focus is not only on purely technical structural interventions but also on measures of	lose to nature. At	tention is also	
focused on the principles of considerate anthropogenic activities directly in and near watercourses. Such activities are aimed at ensuring the main requ	ired functions in th	ne management,	
use and disposal of flowing surface waters, while not leading to damage and degradation of the river landscape, but promoting its protection against all	relevant risks. 2. fl	uvial processes,	
which are the most important geomorphic manifestations in the river landscape in relation to the activities of flowing water. Their understanding provi	des the necessar	y basis for the	
successful application and synthesis of available knowledge on alluvial flows in the field of river engineering. The aim is to recognize the different cha	racteristic channe	el types and flow	
development phases, including the dynamics of their changes, and to identify the processes shaping the river channel and its floodplain, including an	understanding of	f their controlling	
mechanisms. It also includes a qualitative and quantitative description of processes such as the onset of sediment particle movement and sediment mov	ement, erosion ar	nd sedimentation	
processes in the channel or the formation and development of bed formations, the mechanism of undercutting and bank slumping, deepening or softe	ening of the cross	-flow profile, etc.	
An important part of this is the study of the response of modified watercourses to channel intervention caused by sudden natural changes or anthrog	ogenic activities	in the river	
landscape. The common basis for both parts is a summary of the theoretical knowledge and practical principles of advanced hydraulics of fixed-bed cl	hannels in the fiel	d of non-uniform	
and spatially complex flow, turbulent phenomena or resistance caused by granular channel bed or (riparian) vegetation exposed to the flow.			

. , ,	7 1 70 1			
1420KHH	Steel Structures in Hydraulic and Hydropower Engineering	Z,ZK	5	
143YTPR	Transport Processes	Z,ZK	5	
Flow and solute transport in variably saturated soil profile - a complex theoretical approach. HYDRUS simulation models and its applecation. Solving of 1D, 2D and				
144PHCV	Wastewater treatment	7 7K	5	

The goal of the part Drinking water treatment is to get acquainted with technological processes of water treatment, design and operation of drinking water treatment plant. Get to know the technology, design and operation of different types of wastewater treatment plants for different sources of pollution. Hydraulic characteristics of tanks. Operation of mechanical and biological wastewater treatment processes. Ranges of WWTP capacity, specifics of small sources. Mechanical and biological WWTPs, possibilities, plant layouts and sludge processing. WWTP protective zone. Assessment of WWTP effects on receiving waters. Amount of wastewater and pollution. Design of cesspits and septic tanks. Fat and oil traps. Biofilm reactors. Activated sludge reactors. Vegetative treatment.

Name of the block: Povinn volitelné p edm ty, doporu ení S1

Minimal number of credits of the block: 30

The role of the block: S1

Code of the group: NV20230300

Name of the group: Stavební inženýrství - vodní hospodá ství a vodní stavby, diplomová práce

Requirement credits in the group: In this group you have to gain at least 30 credits

Requirement courses in the group: In this group you have to complete at least 1 course

Credits in the group: 30

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
141DPM	Diploma Thesis Jaromír Dušek, Michal Dohnal, Václav Matoušek, Vojt ch Bareš, Aleš Havlík, Tomáš Picek, Petr Sklená, Josef K e ek Michal Dohnal Michal Dohnal (Gar.)	Z	30	24C	Z	S1
142DPM	Diploma Thesis Pavel Fošumpaur, Petr Nowak, Martin Horský, Ladislav Satrapa, Martin Králík, Miroslav Brou ek, Milan Zukal, Petra Nešvarová Chvojková, Michal Toman, Martin Horský Ladislav Satrapa (Gar.)	Z	30	24C	Z	S1
143DPM	Diploma Thesis Martin Šanda Tomáš Dostál (Gar.)	Z	30	24C	Z	S1
144DPM	Diploma Thesis Bronislava Rohanová Filip Horký (Gar.)	Z	30	24C	Z	S1

Characteristics of the courses of this group of Study Plan: Code=NV20230300 Name=Stavební inženýrství - vodní hospodá ství a vodní stavby, diplomová práce

otario, aipioilio i	.						
141DPM	Diploma Thesis	Z	30				
The course enables the student to prepare, write and submit a diploma thesis. The Department of Hydraulics and Hydrology provides consultations in the selected topic, especially in							
the person of the super	the person of the supervisor of the thesis.						
142DPM	Diploma Thesis	Z	30				
The work is an individua	al activity of the student in the preparation of the topic of the final thesis for the period of study on the assigned professional t	opic.					
143DPM	Diploma Thesis	Z	30				
Diploma thesis is select	ed by the student at one of departments, involved within study program, according to his specific interest.						
144DPM	Diploma Thesis	Z	30				
Diploma Thesis concerning sewerage, waste water treatment, water suply, networks and balnology.							

List of courses of this pass:

Completion Credits

Name of the course

Code

141APHD	Applied Hydrology	Z,ZK	5
Advanced hydrol	ogy course. Quantitative description of hydrological processes. Methods of measurement and data evaluation. Deterministic and stoc	hastic modeling in	hydrology.
141DPM	Diploma Thesis	Z	30
The course enable	s the student to prepare, write and submit a diploma thesis. The Department of Hydraulics and Hydrology provides consultations in the person of the supervisor of the thesis.	ne selected topic,	especially in
141HY3V	Hydraulics 3	Z,ZK	5
Flow of real liquid	(mathematical modelling, Navier-Stokes equations, turbulence). Dimensional analysis and dynamic similarity. Unsteady flow (waves a	and transients). Flo	w structure
and velocity distrib	ution. Flow around solid bodies (boundary layer, wake). Solid particles in quiescent and flowing liquid. Non-Newtonian flow. Flow in pump	p-pipeline systems	. Application
	of momentum principle to water jets and pump/turbine impellers.		1
141YRIM	River Morphology and Engineering	ZK	5
	sts of two parts: 1. river engineering, where the focus is not only on purely technical structural interventions but also on measures clo		
•	ciples of considerate anthropogenic activities directly in and near watercourses. Such activities are aimed at ensuring the main requirec		•
•	f flowing surface waters, while not leading to damage and degradation of the river landscape, but promoting its protection against all rele		-
	st important geomorphic manifestations in the river landscape in relation to the activities of flowing water. Their understanding provide	•	
	tion and synthesis of available knowledge on alluvial flows in the field of river engineering. The aim is to recognize the different charac		•
	es, including the dynamics of their changes, and to identify the processes shaping the river channel and its floodplain, including an un	•	•
	o includes a qualitative and quantitative description of processes such as the onset of sediment particle movement and sediment movem		
•	nannel or the formation and development of bed formations, the mechanism of undercutting and bank slumping, deepening or softening	•	
	art of this is the study of the response of modified watercourses to channel intervention caused by sudden natural changes or anthrop	•	
landscape. The cor	mmon basis for both parts is a summary of the theoretical knowledge and practical principles of advanced hydraulics of fixed-bed char		non-uniform
	and spatially complex flow, turbulent phenomena or resistance caused by granular channel bed or (riparian) vegetation exposed to		1
141YTHH	Methods of modelling in hydraulics nad hydrology	KZ	5
	elling of 1D non-uniform flow in open channels. A constrained approach to modelling flow in a wide floodplain. Calibration of channel ar	_	
•	ditions. 1D unsteady flow in open channels. Simulation of flood wave propagation in a river channel network. Modelling of 2D free-surfa	•	
method. Modelling	of sediment movement in watercourses. Simulation of the temporal and spatial evolution of alluvial streambeds. Modelling of the rain catchment and urbanized catchment.	fall-runoff process	in a natural
142DPM	Diploma Thesis	Z	30
The	work is an individual activity of the student in the preparation of the topic of the final thesis for the period of study on the assigned pro-	ofessional topic.	'
142OKHH	Steel Structures in Hydraulic and Hydropower Engineering	Z,ZK	5
142PRVD	Management of Hydraulic Schemes	Z,ZK	5
Organisational a	nd technical aspects of operation of water works in the Czech Republic, state administration of water works. Handling and operating r	egulations. Catego	orisation of

water works. Monitoring and supervision of waterworks, waterworks failures and special floods. Reliability of water works. Issues of winter operation of streams, reservoirs and waterworks, ice phenomena and processes on streams, reservoirs and waterworks and management and active influence of the winter regime. Surface water quality in streams and reservoirs, modelling and management of water quality in reservoirs, temperature and oxygen regime of reservoirs. Operation of hydropower plants, surface water permits, operating regimes of continuous, peak-load and pumped storage hydropower plants. Failure conditions and their treatment. Reconstruction and modernisation of dams, weirs and navigation facilities.

Optimisation of ope	erations, damages and risks. Relationship between hydraulic structure operations and the surrounding environment, environmental im structures.	pact assessmen	t of hydraulic
142VHSO	Water-management Schemes	Z.ZK	5
	s an explanation of system methods for the design and management of water management systems. System definition, system represe	,	_
	programming. Optimization methods. Probabilistic methods. Basic types of probability distributions. Statistical derivation of design values.		
	Synthetic series modelling methods. Simulation models. Artificial intelligence methods. Operational management of water manageme	, ,	a. ra.iab.oo.
142YGPV	Geotechnical problems of hydraulic structures	Z,ZK	5
-	course is the problems of failures and problems in the design and operation of hydraulic structures - weirs, dams, waterways and hyd		_
•	dation of structures. Students will be introduced to the solution of various geotechnical problems using examples of designed and ope		
143DPM	Diploma Thesis	Z	30
1 1021 111	Diploma thesis is selected by the student at one of departments, involved within study program, according to his specific inter-	-	00
143HPVO	Groundwater Hydraulics	Z,ZK	5
	with the problem of groundwater flow in saturated rock environments. The introduction of the course is devoted to the theoretical bar	•	_
	ndwater flow. The next part is devoted to simplified solutions of basic problems - flow through phreatic and confined aquifers, seepagrels. At the end of the semester, students will get acquainted with the method of numerical modelling of groundwater flow, using specific individual problem.	•	
143YOPO	Watershed Management	Z,ZK	5
Catchment manage	ment basics at agriculturaly used landscape. Basic principles of hydrology, retention processes, soil erosion, sediment transport are pr	esented. Also ne	gative effects
J	of soil erosion and surface runoff generation and possible control measures design.		
143YTPR	Transport Processes	Z,ZK	5
Flow and solute	transport in variably saturated soil profile - a complex theoretical approach. HYDRUS simulation models and its applecation. Solving	of 1D, 2D and D	problems.
144CIV	Water quality	Z,ZK	5
Composition of natu	iral waters. Types of water pollution, its effects and characteristics. Pollution sources. Running waters. Reservoirs. Water quality monitor	ng. Water quality	classification
	in the Czech Republic. Water quality protection. Water quality modelling.		
144DPM	Diploma Thesis	Z	30
'	Diploma Thesis concerning sewerage, waste water treatment, water suply, networks and balnology.		1
144MVSO	Urban Water Management Modelling	Z,ZK	5
τ '	he course is focused on the application of specialized software for design, modeling and monitoring in water supply and sewerage ar	nd drainage.	1
144OUP	Urban drainage	Z.ZK	5
Field of urban drai	nage. Concepts and integrated assessment of the urban drainage system. Rainfall and rainfall data. Runoff from urban areas - effecti	,	ntration and
	arge, pollutant transport and transformation in the sewer system. Waste water treatment plant during rainfall. Urban streams. Protecti		
	management, tanks. treatment, real time control. Measurement and monitoring. Basics of modelling and simulation programm		
144PUCV	Wastewater treatment	Z,ZK	5
The goal of the part	Drinking water treatment is to get acquainted with technological processes of water treatment, design and operation of drinking water	r treatment plant	Get to know
	ign and operation of different types of wastewater treatment plants for different sources of pollution. Hydraulic characteristics of tanks	•	
biological wastewat	er treatment processes. Ranges of WWTP capacity, specifics of small sources. Mechanical and biological WWTPs, possibilities, plant la	ayouts and sludge	e processing.
WWTP protective z	one. Assessment of WWTP effects on receiving waters. Amount of wastewater and pollution. Design of cesspits and septic tanks. Fat	and oil traps. Bio	film reactors
	Activated sludge reactors. Vegetative treatment.		
144YMIB	Urban engineering and balneology	ZK	5
The course is focus	ed on the principles applied in solving elements of urban engineering such as water supply, sewerage, gas, urban furniture, etc. and	on swimming poo	ols and spas.

For updated information see http://bilakniha.cvut.cz/en/FF.html Generated: day 2025-08-11, time 14:00.