Study plan

Name of study plan: Erasmus Mundus Master Course - SpaceMaster 2024-2030

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time

Required credits: 120
Elective courses credits: 0
Sum of credits in the plan: 120

Note on the plan:

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 98

Diploma Thesis

The role of the block: P

Code of the group: 2024_SPACEMASTER_P

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 98 credits

Requirement courses in the group: In this group you have to complete 11 courses

Credits in the group: 98 Note on the group:

BDIP30

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP30	Diploma Thesis	Z	30	22s	L	Р
BE3M35DRS	Dynamics and Control of Networks Kristian Hengster-Movric Kristian Hengster-Movric (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE3M35SRL	Flight Control Systems Martin Hrom ik Martin Hrom ik (Gar.)	Z,ZK	6	2P+2L	Z	Р
BE3M35LSY1	Linear Systems Petr Hušek Petr Hušek (Gar.)	Z,ZK	6	3P+2S	z	Р
BE3M35ORR	Optimal and Robust Control	Z,ZK	6	2P+2C	L	Р
BE3MPROJ6	Project	Z	6	0p+6s	Z	Р
BE3M35SPC	Space Communication	Z,ZK	8	2P+2S	Z	Р
BE3M35SPI	Space Instruments	Z,ZK	8	2P+2S	L	Р
BE3M35SPP	Space Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35SSD	Spacecraft System	Z,ZK	8	2P+2S	Z	Р
BE3M35TSS	The Solar System	Z,ZK	7	2P+2S	Z	Р

Characteristics of the courses of this group of Study Plan: Code=2024_SPACEMASTER_P Name=Compulsory subjects of the programme

Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.

BE3M35DRS Dynamics and Control of Networks Z,ZK

This course responds to an ever-increasing demand for understanding contemporary networks large-scale complex systems composed of many components and subsystems interconnected into a single distributed entity. Herein, we will consider fundamental similarities between diverse areas such as e.g. forecasting the spread of global pandemics, public opinion dynamics and manipulation of communities through social media, formation controls for unmanned vehicles, energy generation and distribution in power grids, etc. Understanding such compelling issues goes far beyond the boundaries of any single physical, technological or scientific domain. Therefore, we will analyze phenomena across different domains, involving societal, economic and biological networks. For such networked systems, the resulting behavior depends not only on the characteristics of their individual components and details of their physical or logical interactions, but also on a precise way those components are interconnected the detailed interconnection topology. For that reason, the first part of the course introduces fundamental theoretical and abstract computational network analysis concepts; in particular, the algebraic graph theory, network measures and metrics and fundamental network algorithms. The second part of the course subsequently views networks as dynamical systems, studies their properties and ways in which these are controlled, using mainly methods of automatic control theory.

BE3M35SRL Flight Control Systems
The course is devoted to classical and modern control design techniques for autopilots and flight control systems. Particular levels are discussed, starting with the dampers attitude angle stabilizers, to guidance and navigation systems. Next to the design itself, important aspects of aircraft modelling, both as a rigid body and considering flexibility of the structure, are discussed

BE3M35LSY1 Linear Systems

The purpose of this course is to introduce mathematical tools for the description, analysis, and partly also synthesis, of dynamical systems. The focus will be on linear time-invariant multi-input multi-output systems and their properties such as stability, controllability, observability and state realization. State feedback, state estimation, and the design of stabilizing controllers will be explained in detail. Partially covered will be also time-varying and nonlinear systems. Some of the tools introduced in this course are readily applicable to engineering problems such as the analysis of controllability and observability in the design of flexible space structures, the design of state feedback in aircraft control, and the estimation of state variables. The main motivation, however, is to pave the way for the advanced courses of the study program. The prerequsites for this course include undergraduate level linear algebra, differential equations, and Laplace and z transforms.

BE3M35ORR	Optimal and Robust Control	Z,ZK	6
This advanced course	e will be focused on design methods for optimal and robust control. Major emphasis will be put on practical computational skills	and realistically of	complex problem
assignments.			
BE3MPROJ6	Project	Z	6
BE3M35SPC	Space Communication	Z,ZK	8
BE3M35SPI	Space Instruments	Z,ZK	8
BE3M35SPP	Space Physics	Z,ZK	7
BE3M35SSD	Spacecraft System	Z,ZK	8
BE3M35TSS	The Solar System	Z,ZK	7

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 22

The role of the block: PV

Code of the group: 2024_SPACEMASTER_PV Name of the group: Compulsory optionally subjects

Requirement credits in the group: In this group you have to gain at least 22 credits (at most 55)

Requirement courses in the group: In this group you have to complete at least 3 courses (at most 8)

Credits in the group: 22 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35ELS	Electronics in Space	Z,ZK	8	2P+2S	L	PV
BE3M35ISRT	Introduction to Spectroscopy and Radiative Transfer	Z,ZK	8	2P+2S	Z	PV
BE3M35OCS	Onboard Computer and Onboard Software	Z,ZK	7	2P+2S	Z	PV
BE3M35PAT	Polar Atmosphere	Z,ZK	8	2P+2S	L	PV
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7	2P+2S	L	PV
BE3M35SEP	Space Engineering Project 1	Z	7	2P+2S	Z	PV
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	PV
BE3M35SIS	Swedish for International Students 1	Z.ZK	3	2P+2S	Z	PV

Characteristics of the courses of this group of Study Plan: Code=2024_SPACEMASTER_PV Name=Compulsory optionally subjects

BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35ISRT	Introduction to Spectroscopy and Radiative Transfer	Z,ZK	8
BE3M35OCS	Onboard Computer and Onboard Software	Z,ZK	7
BE3M35PAT	Polar Atmosphere	Z,ZK	8
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7
BE3M35SEP	Space Engineering Project 1	Z	7
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7
BE3M35SIS	Swedish for International Students 1	Z,ZK	3

List of courses of this pass:

Code	Name of the course	Completion	Credits
BDIP30	Diploma Thesis	Z	30
•	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h		
	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh		
BE3M35DRS		Z,ZK	6
	sponds to an ever-increasing demand for understanding contemporary networks large-scale complex systems composed of many con	•	•
	o a single distributed entity. Herein, we will consider fundamental similarities between diverse areas such as e.g. forecasting the sprea and manipulation of communities through social media, formation controls for unmanned vehicles, energy generation and distribution in p	• .	
	issues goes far beyond the boundaries of any single physical, technological or scientific domain. Therefore, we will analyze phenome	•	•
	economic and biological networks. For such networked systems, the resulting behavior depends not only on the characteristics of the		
•	sical or logical interactions, but also on a precise way those components are interconnected the detailed interconnection topology. For	•	
the course introd	luces fundamental theoretical and abstract computational network analysis concepts; in particular, the algebraic graph theory, network	k measures and m	etrics and
fundamental netwo	ork algorithms. The second part of the course subsequently views networks as dynamical systems, studies their properties and ways	in which these are	controlled,
	using mainly methods of automatic control theory.		
BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35ISRT	Introduction to Spectroscopy and Radiative Transfer	Z,ZK	8
BE3M35LSY1	Linear Systems	Z,ZK	6
	is course is to introduce mathematical tools for the description, analysis, and partly also synthesis, of dynamical systems. The focus v		
•	utput systems and their properties such as stability, controllability, observability and state realization. State feedback, state estimation		•
	explained in detail. Partially covered will be also time-varying and nonlinear systems. Some of the tools introduced in this course are re	, ,,	0 0
-	the analysis of controllability and observability in the design of flexible space structures, the design of state feedback in aircraft control motivation, however, is to pave the way for the advanced courses of the study program. The prerequsites for this course include under		
variables. The main	differential equations, and Laplace and z transforms.	igraduate lever iiri	ai aigebia,
BE3M35OCS	Onboard Computer and Onboard Software	Z,ZK	7
BE3M35ORR	'	Z,ZK	6
	urse will be focused on design methods for optimal and robust control. Major emphasis will be put on practical computational skills and	, ,	lex problem
	assignments.		
BE3M35PAT	Polar Atmosphere	Z,ZK	8
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7
BE3M35SEP	Space Engineering Project 1	Z	7
BE3M35SIS	Swedish for International Students 1	Z,ZK	3
BE3M35SPC	Space Communication	Z,ZK	8
BE3M35SPI	Space Instruments	Z,ZK	8
BE3M35SPP	Space Physics	Z,ZK	7
DEGMASSORI	Flight Control Systems	Z,ZK	
BE3M35SRL	oted to classical and modern control design techniques for autopilots and flight control systems. Particular levels are discussed, start		6
The course is dev			ers attitude
The course is dev	o guidance and navigation systems. Next to the design itself, important aspects of aircraft modelling, both as a rigid body and consider		ers attitude
The course is devi angle stabilizers, to	o guidance and navigation systems. Next to the design itself, important aspects of aircraft modelling, both as a rigid body and consider are discussed	ering flexibility of th	ers attitude
The course is dev	o guidance and navigation systems. Next to the design itself, important aspects of aircraft modelling, both as a rigid body and consider		ers attitude e structure,

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-10-16, time 21:12.