Recomended pass through the study plan

Name of the pass: Biomedical Engineering - 20/21, 21/22, 22/23, 23/24, 24/25, 25/26

Faculty/Institute/Others:

Department:

Pass through the study plan: Biomedical Engineering

Branch of study guranteed by the department: Welcome page

Guarantor of the study branch:

Program of study: Biomedical Engineering Type of study: Follow-up master full-time

Note on the pass: Informaci o p edepsaném minimálním po tu PV p edm t pro konkrétní jednotlivé semestry

najdete v odpovídajícím studijním plánu programu.

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of semester: 1

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
F7PMBAM	Applied Mathematics Karel Roubík, Martin Rožánek, Ji í Hozman, Ond ej Fišer Ond ej Fišer Karel Roubík (Gar.)	KZ	4	2P+1C	Z	Z
17BOZP	Occupational Safety and Health, Fire Protection and First Aid Petr Kudrna Petr Kudrna (Gar.)	Z	0	1P	Z	Z
F7PMBBSC	Biotransport Jana Mat jková, Roman Mat jka Roman Mat jka Roman Mat jka (Gar.)	Z,ZK	5	2P+2L	Z	Z
F7PMBCZS	Digital Signal Processing Marek Piorecký, Jan Štrobl, Václava Piorecká Václava Piorecká (Gar.) Václava Piorecká (Gar.)	Z,ZK	5	2P+2C	Z	Z
F7PMBZAO	Image Processing and Analysis Marek Piorecký, Jan Strobl, Václav Hlavá , Zoltán Szabó Zoltán Szabó Václav Hlavá (Gar.)	Z,ZK	5	2P+2C	Z	Z
F7PMBOP1	Internship I. Petr Kudrna Petr Kudrna (Gar.)	Z	2	2 XT	Z	Z
F7PMBPIZ	Work with Information Sources and Research Methodology Karel Roubík, Jakub Ráfl, Šimon Walzel Jakub Ráfl Jakub Ráfl (Gar.)	KZ	4	1P+2C	Z	Z
F7PMBSPB	Statistics for Biomedicine Marek Piorecký, Jan Štrobl, Jakub Ráfl, Marian Rybá, Aleš Tichopád Jakub Ráfl Aleš Tichopád (Gar.)	Z,ZK	5	2P+2C	Z	Z

Number of semester: 2

114111111111111111111111111111111111111					,	
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
F7PMBDAE	Product Design and Ergonomy in Health Care Václava Piorecká	Z	4	4C	L	Z
F7PMBEMEO	Electrotechnology and Modern Electronic Circuits Ji í Hozman	Z,ZK	5	2P+2L	L	Z
F7PMBKB	Clinical Biochemistry and Laboratory Diagnostic Methods	Z,ZK	5	2P+2L	L	Z
F7PMBMAR	Measurements and Control in Biomedicine Roman Mat jka	Z,ZK	5	2P+2L	L	Z
F7PMBOP2	Internship II. Petr Kudrna	Z	2	2XT	L	Z
F7PMBPOD	Entrepreneurship	KZ	3	1P+1C	L	Z
F7PMBPMZD	Advanced Methods of Analysis and Data Processing Václava Piorecká	KZ	3	1P+1C	L	Z
F7PMBRP	Semester Project Ond ej Fišer	Z	3	2S	L	Z

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
F7PMBCZT	Certification of Medical Technology Peter Kneppo, Ond ej Gajdoš, Vojt ch Kamenský Peter Kneppo (Gar.)	Z,ZK	3	1P+1C	Z	Z
F7PMBDS1	Diploma Thesis Seminar I. Martin Rožánek, Ond ej Fišer Ond ej Fišer Martin Rožánek (Gar.)	Z	5	4S	Z	Z
F7PMBMTB	Fluid Mechanics in Biomedicine Karel Roubík, Šimon Walzel, Václav Ort Karel Roubík Karel Roubík (Gar.)	Z,ZK	5	2P+1C+1L	. Z	Z
F7PMBOP3	Internship III. Petr Kudrna Petr Kudrna (Gar.)	Z	2	2XT	Z	Z
F7PMBPPTD	Advanced Medical Devices for Diagnostics Martin Rožánek, Petr Kudrna, Tomáš D íž al Petr Kudrna Martin Rožánek (Gar.)	Z,ZK	4	2P+1C	Z	Z
F7PMBSPMM	Software for Mathematical Modeling Bartolom j Biskup Bartolom j Biskup (Gar.)	Z,ZK	5	2P+2C	Z	Z
F7PMBVZ	Public Health, Management of Medical Facilities V ra Adámková, Jan B íza Jan B íza V ra Adámková (Gar.)	ZK	3	2P	Z	Z
F7PMBZPO	Introduction to Law and the Protection of Industrial Property Peter Kneppo, Vojt ch Kamenský, Václav Kratochvíl Vojt ch Kamenský Peter Kneppo (Gar.)	ZK	3	2P	Z	Z

Number of semester: 4

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
F7PMBDP	Diploma Thesis Martin Rožánek	Z	12	80ZP	L	Z
F7PMBDS2	Diploma Thesis Seminar II. Martin Rožánek	Z	3	28	L	Z
F7PMBKST	Quality, Reliability, Testing of Medical Devices Vojt ch Kamenský	ZK	3	2P+1C	L	Z
F7PMBNPM	Nanotechnology for Medicine	Z,ZK	3	2P+1C	L	Z
F7PMBPTT	Advanced Medical Devices for Therapy Petr Kudrna	ZK	3	2P	L	Z
F7PMBTVZ	Technical Equipment for Health Care Facilities, the Infrastructure and Architecture	ZK	3	2P	L	Z
F7PMBZMO	Medical Imaging Processing	Z	3	2C	L	Z

List of groups of courses of this pass with the complete content of members of individual groups

List of courses of this pass:

Code	Name of the course	Completion	Credits		
17BOZP	Occupational Safety and Health, Fire Protection and First Aid	Z	0		
F7PMBAM	Applied Mathematics	KZ	4		
The course deals with practical applications of mathematics and its demonstrations with examples from the field of biomedical engineering.					
F7PMBBSC	Biotransport	Z,ZK	5		
Basic concepts of a systemic approach to the human body. Functional organization of living organisms. Integrated functions and importance of systems providing applications for					
biomedical technicians and engineers. Principles of experimental and examination methods used in physiology and medicine. Examples of application of modern technologies in					
	medicine.				
F7PMBCZS	Digital Signal Processing	Z,ZK	5		
The course deals with the following topics - characteristics of signals, linear time invariant systems (LTI), stationary, non-stationary signals, deterministic, ergodic and stochastic					

The course deals with the following topics - characteristics of signals, linear time invariant systems (LTI), stationary, non-stationary signals, deterministic, ergodic and stochastic processes, description of signals in continuous and discrete domains, A/D conversions and converters, sampling and quantization problems, aliasing and Nyquist's theorem, noise suppression and data preprocessing, fast and discrete Fourier transforms, efficient FFT estimation methods, other discrete transforms: z-transform, its properties and applications in DSP, inverse transforms, poles and zeros of the system, frequency response, correlation and convolution, introduction to digital filter design, FIR and IIR filters and adaptive filters,

spectral analysis ar	nd spectrum estimation methods, current methods of analysis in time and frequency domain, coherence and phase characteristics, periodogram and AR spectrum.	parametric and non	-parametric
F7PMBCZT	Certification of Medical Technology	Z.ZK	3
	ith the issue of placing medical devices on the market. The syllabus of the course is designed to cover the main steps in the process	,	_
F7PMBDAE	Product Design and Ergonomy in Health Care	7	4
	with the following topics - the concept of design and its definition, basic concepts of design theory, design classification, function of	design. Design as	
	lesign approaches, design methods. Design analysis. Design and marketing, brand policy. Perspective view, geometric forms, proble		
composition. Ergo	pnomics - definitions, terms. The role and place of ergonomics in design. Ergonomics in the workplace. Human (patient) - its physical	characteristics, di	mensions,
human body, sensa	tions and perceptions, reflexes, human psychological characteristics, interpersonal relationships, voluntary act, motivation, efficiency	, work organizatior	n. Handicap.
Human and medica	I product. Aids, instruments and tools. Climate conditions. Lighting. Noise. Vibration and shock. Safety. Interior of medical facility (colo	r, lighting, materials	s). Universal
	design / Design for all, 7 basic principles. Design of medical devices, principles of design in healthcare.		
F7PMBDP	Diploma Thesis	Z	12
Independent wor	k of the student at the end of the study, when the student has to demonstrate the ability to independently and comprehensively proc	ess the given topic	using the
	red during the study. The student chooses the topic of the thesis from the topics offered by the department that guarantees the stud		
=	thesis at the beginning of the 4th semester. In this semester the thesis is submitted and defended. The student defends his/her thesis		
This thesis is evalu	lated by the supervisor and the opponent according to the ECTS grading scale. Subsequently, the evaluation and the result of the firm	nal state examination	on from the
E=0.40004	thematic areas are included in one final evaluation.	_	
F7PMBDS1	Diploma Thesis Seminar I.	Z	5
i ne dipioma sem	inar serves as a support for the start of work on the diploma thesis. During the semester, students present the intended aims and mo	etnods of their thes	is and the
EZDMDDOO	partial results of their work.	7	
F7PMBDS2	Diploma Thesis Seminar II.	Z	3
The Diploma Semir	nar II is a continuation of the course Diploma Seminar I. The follow-up activity in the solution of the diploma thesis is controlled during	g the seminar. In pa	articular, the
	intermediate results of the diploma thesis are checked, which students present during the semester.	7 71/	_
F7PMBEMEO	Electrotechnology and Modern Electronic Circuits	Z,ZK	5
	ith the following topics: sub-blocks of communication (low-current/powe) and power (high-current/power) electrical engineering, whic nd / or analog-digital circuits or digital-analog circuits especially in the field of drive control and actuator), basic concepts and require	•	
•	ly, load capacity, connection to other peripherals, etc., emphasis is also placed on the principles and applications of synchronous and		
	OneWire, USART), programmable circuits (principles of programmable logic, overview of programmable circuits - PAL, GAL, CPLD,	•	
	pocontrollers and microprocessors (8-bit, 16-bit and 32-bit architecture), systems for galvanic isolation of signal and power supply (op		
p , ,	data bus separators), power drivers for motors and other actuators (H-bridges , triac and thyristor control, IGBT transistors		,
F7PMBKB	Clinical Biochemistry and Laboratory Diagnostic Methods	Z,ZK	5
	s with the following topics - biochemistry of the human organism, important metabolic and regulatory pathways and disorders of thes		
	hese disorders and procedures of relevant laboratory tests, activities of the clinical laboratory, processing of data from methods use	-	
F7PMBKST	Quality, Reliability, Testing of Medical Devices	ZK	3
	urse is to familiarize students with aspects that affect the quality, reliability and testing of medical products, i.e. quality management	I	
	discuss both the related standards used and the individual methods used in quality and reliability management of medical dev	rices.	
F7PMBMAR	Measurements and Control in Biomedicine	Z,ZK	5
The course deals v	rith the following topics - measurement of electrical and non-electrical quantities using conventional laboratory instruments, industria	l A/D converters a	nd digitizing
cards such as DAQ	low-cost solutions with MCUs such as Arduino, as well as factors affecting the accuracy and stability of measurements both at the level	of the sensors and	d converters
themselves, as we	Il as the correct interpretation of these data and the expression of measurement uncertainty and calibration, Machine vision, with a t	ocus on camera sy	stems and
	basics of image recognition, control will include the fundamentals of automation, design of state and sequential automata, addressi		- 1
of threshold and p	roportional controllers, demonstrations on biomedical applications, and new trends in measurement, control and automation using F	PGA and real-time	gate array
E=D14D14TD	technology.	7.71	
F7PMBMTB	Fluid Mechanics in Biomedicine	Z,ZK	5
The course deals w	ith the following topics - modelling and measurement of fluid flow in respiratory care and cardiovascular system, creation of models of	respiratory and ca	rdiovascular
EZDMENIOMA	system, application of fluid mechanics principles in research and development as well as in clinical practice.	7.71/	
F7PMBNPM	Nanotechnology for Medicine	, Z,ZK	3
	uces students to nanomaterials that can be used in modern analytical and diagnostic methods in nanomedicine. The course lectures	•	
	s such as size and chemical potential, their preparation methods and surface functionalization. The course also covers the optical cl minescence and phosphorescence principles and their detection using confocal principles. In the last part of the course, magnetic p		
	NMR detection methods are presented and examples used for optical and magnetic methods in nanomedicine for detection of target		articles and
F7PMBOP1	Internship I.	Z	2
	ctice I complements the practical part of the Biomedical Engineering programme. Students get to know in practice and in more detai	I	'
	er in medical institutions, specifically in routine clinical operation. The professional practice is designed so that the student spends a		
•	es at workplaces using diagnostic medical devices including imaging methods, at least 20 hours at workplaces using therapeutic me		.
	es using laboratory medical devices. The work experience shall also include at least 5 hours in the technical and operational section		
	s and back-up power supplies, and 5 hours in the metrology section. During the internship, the student will get acquainted with process.		
· ·	e daily activities of a biomedical engineer with activity in clinical operation: the issue of evaluating failures of medical devices and tec	· ·	
solutions, implem	nentation of regular calibration or verification of measuring instruments, implementation of regular safety and technical checks of me	dical devices, acce	ptance of
	delivered medical equipment including the necessary documentation, etc.		
F7PMBOP2	Internship II.	Z	2
Professional Praction	e II complements the practical part of the Biomedical Engineering programme and directly follows the practice implemented between	the first and secon	d semesters
within the Profess	ional Practice I block. Practical training in the second block can continue in a medical facility or can take place at other departments	of organisations de	ealing with
	es in the field of biomedical engineering, e.g. at the Electrotechnical Testing Institute or the State Office for Drug Control, etc. During	· · · · · · · · · · · · · · · · · · ·	
	legislative and administrative processes that are directly related to the activity of a biomedical engineer: the issue of selection procedu		
•	ical equipment for the needs of the selection procedure, participation in the evaluation of selection procedures, etc. An essential par		٠ .
	in the field of medical devices and measuring instruments registration, especially with emphasis on orientation in database systems		
TO HOURS OF TAMIIIA	risation with information systems, NIS, KIS, PACS and patient data security issues. This may include participation in auditing activitie in connection with medical technology, etc.	o, analysis of adve	rise events
EZDMBODO	**	7	2
F7PMBOP3	Internship III. be III builds on previous blocks of professional practice and complements the practical part of the Biomedical Engineering programm	Z	2 of internship
	place in a workplace that is closely related to the topic of the student's thesis. In the third block, the internship may take place in a h		
mii typiodily take	place in a memplace that is stockly related to the topic of the students those. In the third block, the internship may take place in a his	zamouro idollity, go	

organizations or even in commercial companies in the field of biomedical engineering. The internship may include the implementation of measurements requiring specific equipment not available at the Faculty of Biomedical Engineering. The implementation of the internship is always subject to the approval of the course supervisor. F7PMBPIZ Work with Information Sources and Research Methodology The course deals with the following topics - characteristics of research and science, types of research, relation to legislation and financial sources, research projects, grant applications and the grant process, basic characteristics and specifics of a professional text, content of individual sections, publishing practices, publishing ethics, citation of sources, information sources, typographical rules, mathematical typesetting, proofreading of texts, principles for creating presentations, presentation of results in the form of tables, graphs, diagrams and F7PMBPMZD Advanced Methods of Analysis and Data Processing This course comprehends/deals methods of biosignal generation, biosignal acquisition and basic parameters of biosignals required for diagnostics. Methods and algorithms for biosignal processing, analysis and evaluation used for biological signals, mainly electrophysiological signals. Preprocessing, filtering, time and frequency analysis. Use of modern spectral analysis methods. Visualisation of results, topographic mapping, method of compressed spectral arrays (CSA). Adaptive segmentation of non-stationary signals is discussed. Application of methods using artificial intelligence. Methods of automated signal classification - supervised/unsupervised, cluster analysis, learning classifier. Artificial neural networks (ANN). Practical application of biosignal processing. Case studies of ANN application on epileptogenic recordings and neural recordings in general. Genetic algorithms and simulated annealing is presented. F7PMBPOD Entrepreneurship Students will get a general overview of the company and its key functional areas. Students will be able to identify the elements of success of entrepreneurial ventures, consider the legal and financial conditions for starting a business venture, also evaluate the effectiveness of different entrepreneurial strategies. Finally students will be able to specify the basic performance indicators of entrepreneurial activity and explain the importance of marketing and management in businesses. At the end of the course students will interpret their own business plan. F7PMBPPTD Z,ZK Advanced Medical Devices for Diagnostics The course deals with advanced issues focused on diagnostics in medicine. F7PMBPTT Advanced Medical Devices for Therapy ZK 3 The course deals with the following topics - instrumentation used in surgical fields and selected therapeutic devices used in various fields of medicine, physical principles of the devices, safety aspects of their operation, including the relationship to technical standards and specific clinical applications. F7PMBRP Semester Project Within the year-long project, students choose the topic of an individual project in the field of biomedical engineering, which represents the first stage of the master's thesis. The topics from which students choose are available in the "Projects" database. Students can also provide their own assignment, which must be approved by the programme supervisor and the Head of Department. The main objective of the individual project is to generate a suitable thesis topic based on the current state of the art. The output of the year-long project is a description of the objectives of the follow-up thesis, an overview of the planned methods and the expected outputs and contributions in the field of biomedical engineering. F7PMBSPB Statistics for Biomedicine Z,ZK The course deals with the following topics - methods of statistical analysis intended primarily for medical research - clinical, biological, biochemical, biophysical and other studies, methods of descriptive and inductive statistics, statistical epidemiological methods, hypothesis testing, comparison of groups (parametric and non-parametric methods), ANOVA, correlation and simple regression analysis, multivariate regression models, multivariate linear models, logistic regression, discriminant analysis, survival analysis, etc, model calculations and interpretation of results. F7PMBSPMM Software for Mathematical Modeling Z,ZK 5 Technical Equipment for Health Care Facilities, the Infrastructure and Architecture F7PMBTVZ 7K 3 The course deals with the following topics - infrastructure of a medical facility and its architecture, media distribution (utility networks - electrical wiring, specifics of circuits, water, gas distribution, power systems, power supplies, drives, compensation, spaces in healthcare - specifics of individual spaces, steam distribution systems), practical exercises in the area of project development, familiarization with the necessary related Czech technical norms and standards of the Ministry of Health of the Czech Republic, which specify all the requirements for various types of premises and equipment, focus on barrier-free healthcare facilities.

F7PMBVZ Public Health, Management of Medical Facilities ZK 3

F7PMBZAO Image Processing and Analysis Z,ZK The course deals with the topics - digital image processing vs. computer vision, the role of interpretation, objects in the image, digital image, distance transformation, histogram of brightness, image acquisition from the geometric and radiometric point of view, Fourier transform, derivation of the sampling theorem, frequency filtering of image, PCA, brightness transformation, geometric transformations, interpolation, registration, processing in the spatial domain, convolution, correlation, noise filtering, edge detection, linear and nonlinear methods, mathematical morphology, image compression, color images, texture, segmentation of objects in images, description of objects in images, and their recognition.

F7PMBZMO	Medical Imaging Processing	Z	3
F7PMBZPO	Introduction to Law and the Protection of Industrial Property	ZK	3

P edm t je koncipován jako p ehled základních legislativních p edpis ve zdravotnictví z oblasti medicínského práva, ochrany duševního vlastnictví. V rámci p edm tu se student seznámí s nejr zn jšími zákony v dané oblasti. P edm t se zabývá následujícími tématy - problematika zdravotnické legislativy, základy práva a správního procesu, principy a zásady zdravotnické legislativy, st žejní zákony pro biomedicínské inženýrství, nákup zdravotnické techniky, medicínské právo - informovaný souhlas, pou ení pacienta, odmítnutí zdravotní pé e, ukon ení pé e o pacienta, pr myslové vlastnictví a jeho ochrana (patenty, vzory), právní ochrana duševního vlastnictví.

For updated information see http://bilakniha.cvut.cz/en/FF.html Generated: day 2025-10-21, time 02:27.