Recomended pass through the study plan

Name of the pass: prg.ai Master - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Pass through the study plan: prg.ai Master

Branch of study guranteed by the department: Welcome page

Guarantor of the study branch: Program of study: prg.ai Master

Type of study: Follow-up master full-time

Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of semester: 1

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BECM36AIS	Al and Society	ZK	6	1P+1C	Z	Р
BECM36AIC	Al for Cybersecurity	Z,ZK	6	2P+2C	Z	Р
BECM33DPL	Deep Learning Essentials Lukáš Neumann	Z,ZK	6	2P+2C	Z	Р
BECM33MLE	Machine Learning Engineering	KZ	6	2P+2C	Z	Р
2025_MPRGAIVOL	Elective subjects	Min. cours.	Min/Max 6/999			V

Number of semester: 2

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33MPV	Computer Vision Methods Georgios Tolias, Ji í Matas, Jan ech, Dmytro Mishkin Ji í Matas (Gar.)	Z,ZK	6	2P+2C	L	Р
BECM33MLF	Machine Learning Fundamentals	Z,ZK	6	2P+2C	L	Р
BECM36MLM	Machine Learning Methods	Z,ZK	6	2P+2C	L	Р
BECM36NLPT	Natural Language Processing and Translation	Z,ZK	6	2P+2C	L	Р
BECM36STAI	Selected Topics in Al	KZ	6	2P+2C	L	Р

Number of semester: 3

	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP30	Diploma Thesis	Z	30	22s	L	Р

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
2025_MPRGAIVOL	RGAIVOL Elective subjects	Min. cours.	Min/Max			,,
		1	6/999			V

List of courses of this pass:

Code	Name of the course	Completion	Credits
BDIP30	Diploma Thesis	Z	30
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or I	ner branch of study	, which will
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examir	nation.
BE4M33MPV	Computer Vision Methods	Z,ZK	6
The course covers	selected computer vision problems: search for correspondences between images via interest point detection, description and match	ng, image stitching	g, detection,
recognition and	segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This	s course is also pa	rt of the
inter-university pro	ogramme prg.ai Minor. It pools the best of Al education in Prague to provide students with a deeper and broader insight into the field	of artificial intellige	ence. More
	information is available at https://prg.ai/minor.		
BECM33DPL	Deep Learning Essentials	Z,ZK	6
The course teache	s deep learning methods on known robotic problems, such as semantic segmentation or reactive motion control. The overall goal is	imeless, universal	knowledge
rather than listing a	ll known deep learning architectures. Students are assumed to have working prior knowledge of mathematics (gradient, jacobian, he	ssian, gradient des	scent, Taylor
' ' '	chine learning (Bayes risk minimization, linear classifier). The labs are divided into two parts; in the first one, the students will solve e		
scratch (including	the reimplementation of autograd backpropagation), and in the second one, students will build on existing templates in order to solve	complex tasks inc	cluding RL,
	vision transformers and generative networks.		
BECM33MLE	Machine Learning Engineering	KZ	6
	on anchoring theoretical knowledge of artificial intelligence (AI) methods into practice. Upon completion of the course, students should	• .	•
	d considerations of applying machine learning to real-world problems. They should get familiar with technologies and workflows that allo		ŭ
acquired througho	but the program. The student's work is oriented to the programming language Python, with the option to use C++, Julia, and Rust. Du	ring the labs and h	omework,
	students become familiar with topics like training pipelines, containerization, and production deployments.		
BECM33MLF	Machine Learning Fundamentals	Z,ZK	6
	urse is to provide a comprehensive understanding of the fundamental principles underlying machine learning algorithms and to expla		
	s. The goal of statistical machine learning is to design systems incorporating models and algorithms capable of learning to solve prol		•
	or knowledge of the problem. This course is designed with two main objectives. First, it seeks to clarify the basic principles of learning	•	
maximum likelihood	d learning, and Bayesian learning, and to delve into their theoretical foundations. Second, it seeks to explore the basic models for cla	ssification and reg	ression and
DE01400410	show how these models can be effectively learned by applying these basic concepts.	7 714	
BECM36AIC	Al for Cybersecurity	Z,ZK	. 6
	the course is to learn about cybersecurity and the importance of using AI in this field to understand how it transforms our perception		
BECM36AIS	Al and Society	ZK	6
	tes students to topics that combine technical understanding of ML/AI safety and security with social and philosophical dimensions of M		
	in high-risk scenarios and on helping students understand how to design robust, fair, and accountable ML/AI lifecycles that address soc		0.
	e will also show students how to navigate the complex regulatory environment emerging in response to rising concerns over impacts		
BECM36MLM	Machine Learning Methods	Z,ZK	6
_	familiar with machine learning methods that go beyond the standard settings taught in basic ML courses. They will learn methods the		
structured data don	nains (e.g. relational databases), including graph neural networks and recent neuro-symbolic techniques. The course will also teach t	ne students some	methods for
	model interpretability, basics of causality, and reinforcement learning.		
BECM36NLPT		Z,ZK	6
	The course covers the area of natural language processing (NLP) by means of an in-depth focus on the task of machine translation		
BECM36STAI	Selected Topics in AI	KZ	6
The course aims t	o immerse students in the forefront of artificial intelligence research, covering current challenges, significant areas of study, and eme	erging trends in the	field. This
	course will delve into various advanced topics, providing an understanding of contemporary AI issues and innovations.		

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-07-22, time 14:07.