Recomended pass through the study plan

Name of the pass: Specialization Artificial Intelligence and Computer Science - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Open Informatics - Artificial Intelligence and Computer Science 2025 Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Open Informatics Type of study: Bachelor full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of sei	mester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B01DMA	Discrete Mathematics Petr Habala Petr Habala (Gar.)	Z,ZK	5	2P+2S	Z	Р
B0B01LAG	Linear Algebra Ji í Velebil, Jakub Rondoš, Natalie Žukovec, Daniel Gromada, Josef Dvo ák, Mat j Dostál Ji í Velebil Ji í Velebil (Gar.)	Z,ZK	8	4P+2S	Z	Ρ
B4B33PSY	Computer systems	KZ	5	2P+2C	Z	Р
B0B36PRP	Procedural Programming Jan Faigl Jan Faigl Jan Faigl (Gar.)	Z,ZK	6	2P+2C	Z	Р
B4B33RPH	Solving Problems and other Games Tomáš Svoboda, Petr Pošík Petr Pošík Tomáš Svoboda (Gar.)	KZ	6	2P+3C	Z	Р
BEZZ	Basic Health and Occupational Safety Regulations Vladimír K la, Radek Havlí ek, Ivana Nová Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	; Z	Р

Number of se	mester: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B35APO	Computer Architectures	Z,ZK	6	2P+2L	L	Р
BEZB	Safety in Electrical Engineering for a Bachelor's Degree Vladimír K Ia, Radek Havlí ek, Ivana Nová Radek Havlí ek Vladimír K Ia (Gar.)	Z	0	2BP+2BC	Z,L	Ρ
B0B01LGR	Logic and Graphs Natalie Žukovec, Mat j Dostál, Alena Gollová Alena Gollová Marie Demlová (Gar.)	Z,ZK	5	3P+2S	Z,L	Ρ
B0B01MA1	Mathematical Analysis 1 Josef Dvo ák, Martin K epela, Josef Tkadlec, Veronika Sobotíková Josef Tkadlec Josef Tkadlec (Gar.)	Z,ZK	7	4P+2S	Z,L	Ρ
B4B38PSIB	Computer Networks	Z,ZK	6	2P+2L	L	Р
B0B36PJV	Programming in Java Martin Mudroch, Ji í Vok ínek, Ladislav Serédi Ji í Vok ínek Ji í Vok ínek (Gar.)	Z,ZK	6	2P+3C+7D	L	Ρ

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B33ALG	Algorithms Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Marko Genyk-Berezovskyj (Gar.)	Z,ZK	6	2P+2C	z	Р
B0B01MA2	Mathematical Analysis 2 Miroslav Korbelá , Petr Hájek, Martin Bohata, Jaroslav Tišer, Karel Pospíšil, Paola Vivi, Hana Tur inová Petr Hájek Jaroslav Tišer (Gar.)	Z,ZK	7	4P+2S	L,Z	Ρ
B4B33OSY	Operating Systems	Z,ZK	4	2P+2C	Z	Р
B0B01PST	Probability and Statistics Kate ina Helisová Kate ina Helisová Petr Hájek (Gar.)	Z,ZK	7	4P+2S	Z	Р
B4B36ZUI	Introduction to Artificial Intelligence Viliam Lisý, Branislav Bošanský Branislav Bošanský Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	L	PZ

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B36DBS	Database Systems	Z,ZK	5	2P+2C	L	Р
B0B33OPT	Optimization Tomáš Werner, Petr Olšák, Mirko Navara, Tomáš Kroupa Tomáš Werner Tomáš Werner (Gar.)	Z,ZK	7	4P+2C	Z,L	Ρ
B4B36PDV	Parallel and Distributed Computing Mat j Kafka, Michal Jakob Michal Jakob Michal Jakob (Gar.)	Z,ZK	6	2P+2C	L	Ρ
BEV033DLE	Deep Learning Georgios Tolias, Oleksandr Shekhovtsov, Jan Šochman Oleksandr Shekhovtsov Oleksandr Shekhovtsov (Gar.)	Z,ZK	6	2P+2C	L	ΡZ
B4B36FUP	Functional Programming Rostislav Hor ík, Tomáš Votroubek Rostislav Hor ík Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	L	ΡZ

Number of seme	ster: 5					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4BPROJ6	Unassisted project Tomáš Svoboda, Petr Pošík, Ji í Šebek, Jaroslav Sloup, Ivan Jelínek, Katarína Žmolíková Petr Pošík	Z	6	0+2	Z,L	Р
B4B01JAG	Languages, Automats and Gramatics Marie Demlová, Ji í Demel Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	2P+2S	Z	PZ
B4B33RPZ	Recognition and Machine Learning Ond ej Drbohlav, Jan Šochman, Ji í Matas Jan Šochman Ji í Matas (Gar.)	Z,ZK	6	2P+2C	Z	PZ
2025_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of seme	ester: 6					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BBAP20	Bachelor thesis Roman mejla Roman mejla (Gar.)	Z	20	12S	L,Z	Р
B4B36PKT	P íprava ke státnicím Jan Faigl	Z	1	8P+8S	L	Р
2025_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

List of groups of courses of this pass with the complete content of members of individual groups

Min. cours. Min/Max	
2025_BOIVOLVolitelné odborné p edm ty00/999	v

List of courses of this pass:

Code	Name of the course	Completion	Credits
B0B01LAG	Linear Algebra	Z,ZK	8
The course covers th	ne initial parts of linear algebra. Firstly, the basic notions of a linear space and linear mappings are covered (linear dependence and inde	pendence, basis, o	coordinates
etc). The calculus of	f matrices (determinants, inverse matrices, matrices of a linear map, eigenvalues and eigenvectors, diagonalisation, etc) is covered i	next. The application	ons include
	solving systems of linear equations, the geometry of a 3D space (including the scalar product and the vector product) and SV		
B0B01LGR	Logic and Graphs	Z,ZK	5
This course covers b	asics of mathematical logic and graph theory. Syntax and semantics of propositional and predicate logic are introduced. The importance	e of the notion of co	onsequence
	and of the relationship between a formula and its model is stressed. Further, basic notions from graph theory are introduced	l.	
B0B01MA1	Mathematical Analysis 1	Z,ZK	7
	The aim of the course is to introduce students to basics of differential and integral calculus of functions of one variable.		
B0B01MA2	Mathematical Analysis 2	Z,ZK	7
The subject covers	an introduction to the differential and integral calculus in several variables and basic relations between curve and surface integrals.	Other part contair	ns function
	series and power series with application to Taylor and Fourier series.		
B0B01PST	Probability and Statistics	Z,ZK	7
B0B33OPT	Optimization	Z,ZK	7
1	an introduction to mathematical optimization, specifically to optimization in real vector spaces of finite dimension. The theory is illustrative		of examples.
	You will refresh and extend many topics that you know from linear algebra and calculus courses.		
B0B36PJV	Programming in Java	Z,ZK	6
1	n the basics of algorithms and programming from the first semester and introduces students to the Java environment. The course als		ject concept
	e. The topics of the course includes exceptions, event handling, and building a graphical interface. Basic library methods, working with		
	n important topic is models of multithreaded applications and their implementation. Practical exercises of practical skills and knowledg		
of solving partial tas	ks and semester work, which will be submitted continuously through the source code version control system. The semester work so	, pring consists of p	oints for the
	correctness and efficiency of the code, as well as points that take into account the quality of the source codes, their readability and r	eusability.	
B0B36PRP	Procedural Programming	Z,ZK	6
	anies basic programming emphasizing the data representation in computer memory. Furthermore, the concepts of linked data structur		user inputs
are developed. Stu	udents master the practical implementation of simple individual tasks. The course emphasizes acquiring programming habits for creation	ating readable and	reusable
programs. At the san	ne time, the effort is to build students an overview of the program operation, data model, memory access, and management. Therefore,	the C programmir	ng language
is used that provides	a direct link between the program data structures and their representation in the computer memory. Students will get acquainted not	only with program	compilation
and linking but also v	with debugging and profiling. Labs aim to acquire practical skills of implementing simple individual tasks, emphasizing functionality an	d accuracy of impl	ementation.
Student independe	ence is developed by a set of homework with the possibility of optional and bonus assignments. The final task is an integration of a la	irger program usir	ng existing
imp	lementations. Evaluation of coding style motivated by writing legible, understandable, and maintainable codes is also a part of the se	elected tasks.	
B4B01DMA	Discrete Mathematics	Z,ZK	5
In this course studer	nts meet some important topics from the field of discrete mathematics. Namely, they will explore divisibility and calculations modulo n,	diophantine equat	tions, binary
relations, mapping	gs, cardinality of sets, induction, and recurrence equations. The second aim of this course is to teach students the language of mathe	ematics, both pass	sively and
	actively, and introduce them to mathematics as science.		
B4B01JAG	Languages, Automats and Gramatics	Z,ZK	6
Basic notions of the	theory of finite automata and grammars: deterministic and non deterministic finite automata, languages accepted by finite automata, r	gular expressions	. Grammars
	and languages generated by grammars with emphasis to context free grammars. A very brief introduction of Turing machine	S.	
B4B33ALG	Algorithms	Z,ZK	6
In the course, the alg	gorithms development is constructed with minimum dependency to programming language; nevertheless the lectures and seminars	are based on Java	. Basic data
types a data struc	tures, basic algorithms, recursive functions, abstract data types, stack, queues, trees, searching, sorting, special application algorith	ms, Dynamic prog	ramming.
	Students are able to design and construct non-trivial algorithms and to evaluate their effectivity.		
B4B33OSY	Operating Systems	Z,ZK	4
Lecture introduces	operation system's basic concepts and principles as processes, threads, communication and synchronization, virtual memory, driver	s, file systems, ba	sic security
aspects. These topic	cs are theoretically described and demonstrated on Linux and Windows OS with multi-core systems. Practical exercises from OS in	C programming la	nguage will
	be solved on labs. Students will work with Linux OS and micro-kernel NOVA.		
B4B33PSY	Computer systems	KZ	5
B4B33RPH	Solving Problems and other Games	KZ	6
	on is to let students to deal with real-world problems properly. When working on real problems the student shall learn how to decomp		
	ow to test and validate individual steps and so on. Many problems will actually be beyond the first-year-student skills. And many problems		
,	nsolved parts should motivate the students to study difficult theoretical subjects. They should generate the important questions. Idea		
	e eager to study deeper about informatics. The course also explains the basis of the object oriented design, software testing, ways fi	-	-
the student should b		or minang roadabie	

B4B33RPZ	Recognition and Machine Learning	Z,ZK	6					
The basic formulat	ions of the statistical decision problem are presented. The necessary knowledge about the (statistical) relationship between observat	ions and classes o	of objects is					
acquired by learning on the raining set. The course covers both well-established and advanced classifier learning methods, as Perceptron, AdaBoost, Support Vector Machines, and								
Neural Nets. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight								
	into the field of artificial intelligence. More information is available at https://prg.ai/minor.							
B4B35APO	Computer Architectures	Z,ZK	6					
B4B36DBS	Database Systems	Z,ZK	5					
B4B36FUP	Functional Programming	Z,ZK	6					
This course introdu	ces students into the techniques of functional programming, the advantages and disadvantages of this programming paradigm, and its	use in practice. Th	is approach					
	sense that the programmer symbolically describes the problem to be solved, rather than specifying the exact sequence of operation							
-	sence of the solved problem and implementing even more complex algorithms compactly. Functional programming has notable adva							
	on of algorithms, and the most useful functional programming concepts are increasingly often introduced to standard programming lar							
	mming on symbols, rather than numbers, functional programming has been heavily used in in artificial intelligence fields, such as agent							
learning. This cours	se is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a de the field of artificial intelligence. More information is available at https://prg.ai/minor.	eper and broader	insight into					
B4B36PDV	Parallel and Distributed Computing	Z,ZK	6					
B4B36PKT	P íprava ke státnicím	Z	1					
B4B36ZUI	Introduction to Artificial Intelligence	Z,ZK	6					
The aim of the course is to cover the basics of symbolic artificial intelligence. We will focus on algorithms of informed and uninformed state space search, problem representation and								
solving, represent	ation of knowledge using formal logic, methods of automated reasoning, and an introduction to Markov decision making, and to two-	player games. This	s course is					
also part of the in	nter-university programme prg.ai Minor. It pools the best of Al education in Prague to provide students with a deeper and broader insi	ight into the field o	f artificial					
	intelligence. More information is available at https://prg.ai/minor.							
B4B38PSIB	Computer Networks	Z,ZK	6					
B4BPROJ6	Unassisted project	Z	6					
BBAP20	Bachelor thesis	Z	20					
BEV033DLE	Deep Learning	Z,ZK	6					
The course introdu	ces deep neural networks and deep learning a branch of machine learning and artificial intelligence. Starting from a recap of generic	concepts of mach	ine learning					
(empirical risk min	imisation, linear classifiers and regressions, generalisation bounds), it will introduce deep networks as model classes for prediction (classification) and	regression					
and discuss their m	odel complexity and generalisation bounds. The course aims at a solid understanding of all concepts and algorithms needed to succe	essfully design, imp	plement and					
learn deep network	s in machine learning applications. This includes error back propagation and stochastic gradient methods, weight initialisation and no	ormalisation, deter	ministic and					
stochastic regularis	ation methods, data augmentation as well as adversarially robust learning approaches. The course concludes with an introductory di	iscussion of generation	ative neural					
	nd GANs) as well as recurrent neural networks (GRU and LSTM) for structured output classification. Students will gain solid knowled	5						
	s practical skills needed for successfully designing, implementing and learning deep networks for machine learning applications. At the							
provide a solid fund	lament for forthcoming courses (e.g. computer vision), which consider specialised and often more complex variants of neural network	s, loss functions a	and learning					
	approaches for solving machine learning task in their respective area.							
BEZB	Safety in Electrical Engineering for a Bachelor's Degree	Z	0					
	safety course is to give the students basic knowledge of electrical equipment and installation as to avoid danger arising from operation		-					
	mentals of Safety Electrical Engineering. In this way the students receive qualification of instructed person that enables them to work		pment.					
BEZZ	Basic Health and Occupational Safety Regulations	Z	0					
The guidelines were	e worked out based on The Training Scheme for Health and Occupational Safety designed for employees and students of the Czech T	echnical Universit	y in Prague,					
which was provide	d by the Rector's Office of the CTU. Safety is considered one of the basic duties of all employees and students. The knowledge of He	alth and Occupati	onal Safety					
	regulations forms an integral and permanent part of qualification requirements. This program is obligatory.							

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-09, time 22:07.