Recomended pass through the study plan

Name of the pass: Branch Software - Passage through study

Faculty/Institute/Others: Department: Pass through the study plan: Open Informatics - Software 2016 Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Welcome page Type of study: unknown full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of sem	nester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B01DMA	Discrete Mathematics Petr Habala Petr Habala Petr Habala (Gar.)	Z,ZK	5	2P+2S	Z	Р
B0B01LAG	Linear Algebra Ji í Velebil, Jakub Rondoš, Natalie Žukovec, Daniel Gromada, Josef Dvo ák, Mat j Dostál Ji í Velebil Ji í Velebil (Gar.)	Z,ZK	8	4P+2S	Z	Ρ
B0B36PRP	Procedural Programming Jan Faigl Jan Faigl (Gar.)	Z,ZK	6	2P+2C	Z	Р
B4B33RPH	Solving Problems and other Games Tomáš Svoboda, Petr Pošík Petr Pošík Tomáš Svoboda (Gar.)	KZ	6	2P+3C	Z	Р
BEZZ	Basic Health and Occupational Safety Regulations Vladimír K la, Radek Havlí ek, Ivana Nová Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z	Р
2015_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

	Name of the course / Name of the group of courses	1				
Code	(in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0B35APO	Computer Architectures Pavel Píša, Richard Šusta, Petr Št pán Pavel Píša Pavel Píša (Gar.)	Z,ZK	5	2P+2L	L	Ρ
BEZB	Safety in Electrical Engineering for a Bachelor's Degree Vladimír K la, Radek Havlí ek, Ivana Nová Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z,L	Ρ
B0B01LGR	Logic and Graphs Natalie Žukovec, Mat j Dostál, Alena Gollová Alena Gollová Marie Demlová (Gar.)	Z,ZK	5	3P+2S	Z,L	Ρ
B0B01MA1	Mathematical Analysis 1 Josef Dvo ák, Martin K epela, Josef Tkadlec, Veronika Sobotíková Josef Tkadlec Josef Tkadlec (Gar.)	Z,ZK	7	4P+2S	Z,L	Ρ
B4B38PSIA	Computer Networks Ji í Novák, Jan Holub Ji í Novák Ji í Novák (Gar.)	Z,ZK	5	2P+2L	L	Ρ
B0B36PJV	Programming in Java Martin Mudroch, Ji í Vok ínek, Ladislav Serédi Ji í Vok ínek Ji í Vok ínek (Gar.)	Z,ZK	6	2P+3C+7D	L	Ρ
2015_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B33ALG	Algorithms Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Marko Genyk-Berezovskyj (Gar.)	Z,ZK	6	2P+2C	z	Р
B0B01MA2	Mathematical Analysis 2 Miroslav Korbelá, Petr Hájek, Martin Bohata, Jaroslav Tišer, Karel Pospíšil, Paola Vivi, Hana Tur inová Petr Hájek Jaroslav Tišer (Gar.)	Z,ZK	7	4P+2S	L,Z	Р
B4B35OSY	Operating Systems Petr Št pán, Michal Sojka Michal Sojka Michal Sojka (Gar.)	Z,ZK	4	2P+2C	Z	Р
B0B01PST	Probability and Statistics Kate ina Helisová Kate ina Helisová Petr Hájek (Gar.)	Z,ZK	7	4P+2S	Z	Р
B4B36ONM	Object-oriented design and Modeling	Z,ZK	6	2P+2C	Z	PO

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0B36DBS	Database Systems Martin imná, Václav Kratochvíl Martin imná Martin imná (Gar.)	Z,ZK	6	2P+2C+4D	L	Р
B0B33OPT	Optimization Tomáš Werner, Petr Olšák, Mirko Navara, Tomáš Kroupa Tomáš Werner Tomáš Werner (Gar.)	Z,ZK	7	4P+2C	Z,L	Ρ
B4B36PDV	Parallel and Distributed Computing Mat j Kafka, Michal Jakob Michal Jakob Michal Jakob (Gar.)	Z,ZK	6	2P+2C	L	Р
B4B36FUP	Functional Programming Rostislav Hor ík, Tomáš Votroubek Rostislav Hor ík Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	L	PO
2015_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of semester: 5							
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role	
B4BPROJ6	Unassisted project Tomáš Svoboda, Petr Pošík, Ji í Šebek, Jaroslav Sloup, Ivan Jelínek, Katarína Žmolíková Petr Pošík	Z	6	0+2	Z,L	Ρ	
B4B39IUR	User interfaces implementation Zden k Míkovec, Miroslav Macík Miroslav Macík Zden k Míkovec (Gar.)	Z,ZK	6	2P+2S	Z	PO	
B4B01JAG	Languages, Automats and Gramatics Marie Demlová, Ji í Demel Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	2P+2S	Z	PO	
B4B36SIN	Software Engineering Ji í Šebek, Martin Komárek Martin Komárek (Gar.)	Z,ZK	6	3P+2S	Z	PO	
2015_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V	

Number of semester: 6							
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role	
BBAP20	Bachelor thesis Roman mejla Roman mejla (Gar.)	Z	20	12S	L,Z	Р	
2015_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V	

List of groups of courses of this pass with the complete content of members of individual groups

Kód gro	ame of the group of courses and codes of members of this oup (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
		Min. cours.	Min/Max			
2015_BOIVOL	BOIVOL Volitelné odborné p edm ty	0	0/999			v

List of courses of this pass:

Code	Name of the course	Completion	Credits
B0B01LAG	Linear Algebra	Z,ZK	8
The course covers the	ne initial parts of linear algebra. Firstly, the basic notions of a linear space and linear mappings are covered (linear dependence and inde	pendence, basis,	coordinates,
etc). The calculus o	f matrices (determinants, inverse matrices, matrices of a linear map, eigenvalues and eigenvectors, diagonalisation, etc) is covered	next. The applicati	ons include
	solving systems of linear equations, the geometry of a 3D space (including the scalar product and the vector product) and SN	/D.	
B0B01LGR	Logic and Graphs	Z,ZK	5
	asics of mathematical logic and graph theory. Syntax and semantics of propositional and predicate logic are introduced. The importance	•	onsequence
	and of the relationship between a formula and its model is stressed. Further, basic notions from graph theory are introduced	d.	-
B0B01MA1	Mathematical Analysis 1	Z,ZK	7
202011111	The aim of the course is to introduce students to basics of differential and integral calculus of functions of one variable.	_,	
B0B01MA2	Mathematical Analysis 2	Z,ZK	7
1	an introduction to the differential and integral calculus in several variables and basic relations between curve and surface integrals.	•	
	series and power series with application to Taylor and Fourier series.	o lifer part contain	
B0B01PST	Probability and Statistics	Z,ZK	7
	-	Z,ZK	7
B0B33OPT	Optimization	,	
I ne course provides	an introduction to mathematical optimization, specifically to optimization in real vector spaces of finite dimension. The theory is illustrat	ed with a number of	or examples.
	You will refresh and extend many topics that you know from linear algebra and calculus courses.	/	
B0B35APO	Computer Architectures	Z,ZK	5
B0B36DBS	Database Systems	Z,ZK	6
The course is design	ned as a basic database course mainly aimed at the student ability to design a relational data model and to use the SQL language for	or data definition a	s well as for
data querying and	to choose the appropriate degree of transaction isolation. Students will also get acquainted with the most commonly used indexing t	echniques, databa	ise system
	architecture and their management. They will verify their knowledge during the elaboration of a continuously submitted seminar	task.	
B0B36PJV	Programming in Java	Z,ZK	6
The course builds o	n the basics of algorithms and programming from the first semester and introduces students to the Java environment. The course als	so focus on the obj	ject concept
of the Java language	e. The topics of the course includes exceptions, event handling, and building a graphical interface. Basic library methods, working with	n files and using g	eneric types
will be introduced. A	n important topic is models of multithreaded applications and their implementation. Practical exercises of practical skills and knowled	ge of Java is tested	d in the form
of solving partial tas	ks and semester work, which will be submitted continuously through the source code version control system. The semester work sc	oring consists of p	oints for the
	correctness and efficiency of the code, as well as points that take into account the quality of the source codes, their readability and i	eusability.	
B0B36PRP	Procedural Programming	Z,ZK	6
The course accomp	anies basic programming emphasizing the data representation in computer memory. Furthermore, the concepts of linked data structur	es and processing	user inputs
are developed. St	udents master the practical implementation of simple individual tasks. The course emphasizes acquiring programming habits for creation	ating readable and	reusable
programs. At the sar	ne time, the effort is to build students an overview of the program operation, data model, memory access, and management. Therefore	, the C programmi	ng language
is used that provides	s a direct link between the program data structures and their representation in the computer memory. Students will get acquainted not	only with program	compilation
and linking but also	with debugging and profiling. Labs aim to acquire practical skills of implementing simple individual tasks, emphasizing functionality an	d accuracy of impl	ementation.
Student independe	ence is developed by a set of homework with the possibility of optional and bonus assignments. The final task is an integration of a la	arger program usir	ng existing
imp	lementations. Evaluation of coding style motivated by writing legible, understandable, and maintainable codes is also a part of the se	elected tasks.	
B4B01DMA	Discrete Mathematics	Z,ZK	5
In this course studer	nts meet some important topics from the field of discrete mathematics. Namely, they will explore divisibility and calculations modulo n,	diophantine equat	tions, binary
relations, mapping	gs, cardinality of sets, induction, and recurrence equations. The second aim of this course is to teach students the language of math	ematics, both pass	sively and
	actively, and introduce them to mathematics as science.		
B4B01JAG	Languages, Automats and Gramatics	Z,ZK	6
Basic notions of the	theory of finite automata and grammars: deterministic and non deterministic finite automata, languages accepted by finite automata, re-		Grammars
	and languages generated by grammars with emphasis to context free grammars. A very brief introduction of Turing machine		
B4B33ALG	Algorithms	Z,ZK	6
1	gorithms development is constructed with minimum dependency to programming language; nevertheless the lectures and seminars	•	1
	tures, basic algorithms, recursive functions, abstract data types, stack, queues, trees, searching, sorting, special application algorith		
.,,	Students are able to design and construct non-trivial algorithms and to evaluate their effectivity.		
B4B33RPH	Solving Problems and other Games	KZ	6
	on is to let students to deal with real-world problems properly. When working on real problems the student shall learn how to decomp		1
	iow to test and validate individual steps and so on. Many problems will actually be beyond the first-year-student skills. And many pro		
	nsolved parts should motivate the students to study difficult theoretical subjects. They should generate the important questions. Idea		
	be eager to study deeper about informatics. The course also explains the basis of the object oriented design, software testing, ways f		
	codes.	or writing reauable	, and iopust
	cours.		

B4B35OSY	Operating Systems	Z,ZK	4
Lecture introduces	operation system's basic concepts and principles as processes, threads, communication and synchronization, virtual memory, drive	rs, file systems, ba	sic security
aspects. These top	ics are theoretically described and demonstrated on Linux and Windows OS with multi-core systems. Practical exercises from OS in	C programming la	nguage will
	be solved on labs. Students will work with Linux OS and micro-kernel NOVA.		
B4B36FUP	Functional Programming	Z,ZK	6
This course introdu	ces students into the techniques of functional programming, the advantages and disadvantages of this programming paradigm, and its	s use in practice. Th	nis approach
	e sense that the programmer symbolically describes the problem to be solved, rather than specifying the exact sequence of operation	-	
÷	sence of the solved problem and implementing even more complex algorithms compactly. Functional programming has notable adva	• ·	
	ion of algorithms, and the most useful functional programming concepts are increasingly often introduced to standard programming la		
	mming on symbols, rather than numbers, functional programming has been heavily used in in artificial intelligence fields, such as agen		
learning. This cour	se is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a d	eeper and broader	insight into
	the field of artificial intelligence. More information is available at https://prg.ai/minor.		
B4B36ONM	Object-oriented design and Modeling	Z,ZK	6
B4B36PDV	Parallel and Distributed Computing	Z,ZK	6
B4B36SIN	Software Engineering	Z,ZK	6
B4B38PSIA	Computer Networks	Z,ZK	5
B4B39IUR	User interfaces implementation	Z,ZK	6
Based on the user	nterface specification (created by design team), the student will be able to implement user interface and communicate efficiently with	other stakeholders	s taking part
	in the whole process of design, testing, and implementation of the user interface.		
B4BPROJ6	Unassisted project	Z	6
BBAP20	Bachelor thesis	Z	20
BEZB	Safety in Electrical Engineering for a Bachelor's Degree	Z	0
The purpose of the	safety course is to give the students basic knowledge of electrical equipment and installation as to avoid danger arising from operatio	n of it. This introduc	ctory course
contains funda	mentals of Safety Electrical Engineering. In this way the students receive qualification of instructed person that enables them to wor	k on electrical equi	ipment.
BEZZ	Basic Health and Occupational Safety Regulations	Z	0
	e worked out based on The Training Scheme for Health and Occupational Safety designed for employees and students of the Czech		
which was provide	d by the Rector's Office of the CTU. Safety is considered one of the basic duties of all employees and students. The knowledge of H	ealth and Occupati	ional Safety
	regulations forms an integral and permanent part of qualification requirements. This program is obligatory.		

For updated information see <u>http://bilakniha.cvut.cz/en/FF.html</u> Generated: day 2025-08-23, time 21:11.