Recomended pass through the study plan

Name of the pass: Branch Cybernetics and Robotics - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Cybernetics and Robotics - Cybernetics and Robotics Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of seme	ster: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Radek Havlí ek, Ivana Nová, Josef ernohous, Pavel Mlejnek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	z	Ρ
B3M35LSY	Linear Systems	Z,ZK	8	4P+2C	Z	Р
2015_MKYRPV5	Povinn volitelné p edm ty programu B3M35DRS,B3M38INA, (see the list of groups below)	Min. cours. 6 Max. cours. 20	Min/Max 36/120			PV
2015_MKYRVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of seme	ester: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B3M33ARO	Autonomous Robotics	Z,ZK	7	3P+2L	L	Р
B3M38DIT	Diagnostics and Testing	Z,ZK	7	3P+2L	L	Р
B3MPVT	Pavel Mužák, Tomáš Drábek, Martin Hlinovský, Ond ej Drbohlav Tomáš Drábek Tomáš Drábek (Gar.)	KZ	6	0P+4S	L	Р
		Min. cours.				
	Povinn volitelné p edm ty programu	6	Min/Max			5.4
2015_MKYRPV5	B3M35DRS,B3M38INA, (see the list of groups below)	Max. cours.	36/120			PV
		20				
		Min. cours.	Min/Max			
2015_MKYRVOL	Volitelné odborné p edm ty	0	0/999			V

Number of semes	ster: 3					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B3MPROJ8	Project Martin Hlinovský, Petr Pošík, Drahomíra Hejtmanová, Jaroslava Mat jková, Tomáš Svoboda, Martin Šipoš, Jana Zichová	Z	8	0p+6s	Z	Р

2015_MKYRPV5	Povinn volitelné p edm ty programu B3M35DRS,B3M38INA, (see the list of groups below)	Min. cours. 6 Max. cours. 20	Min/Max 36/120	PV
2015_MKYRVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999	V

Number of semes	ster: 4					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP30	Diploma Thesis	Z	30	22s	L	Р

List of groups of courses of this pass with the complete content of members of individual groups

Kód		Name of the group of group (for specification	f courses and on see here o	codes of members of this r below the list of courses)	Com	pletion	Credits	Scope	Semester	Role
2015_MK	YRPV5	Povinn v	olitelné p edn	n ty programu		. cours. 6 . cours. 20	Min/Ma 36/120	1		PV
B3M35DRS	Dynamics	and Control Networks	B3M38INA	Integrated Avionics		B3M37K	İN S	pace Engine	ering	
B3M37LRS	Aeronautic	al radio systems	B3M33MKR	Mobile and Collective Robotics		B3M38M	SE M	lodern Senso	ors	
B3M35NES	Nonlinear	Systems and Chaos	B3M35OFD	Estimation, filtering and detect		B3M35O	RR C	ptimal and R	obust Control	
B3M33PRO	Advanced	robotics	B3M35PSR	Real -Time Systems Programming		B3M33P	IS Ir	dustrial Infor	mation Systen	าร
B3M38PSL	Aircraft Avi	ionics	B3M38SPD	Data Acquisition and Transfer		B3M35S	RL F	light Control	Systems	
B3M33UI	Artificial In	telligence	B3M38VBM	Videometry and Contactless Meas	u	B3M38V	IN V	irtual Instrum	nentation	
B3M38ZDS	Analog Sig	nal Processing and Dig				•				
2015_MK	YRVOL	Volite	elné odborné	p edm ty	Min	. cours. 0	Min/Ma 0/999	ĸ		v

List of courses of this pass:

Code	Name of the course	Completion	Credits
B3M33ARO	Autonomous Robotics	Z,ZK	7
The Autonomous	robotics course will explain the principles needed to develop algorithms for intelligent mobile robots such as algorithms for: (1) Mapping	ing and localizatio	n (SLAM)
sensors calibration	(lidar or camera). (2) Planning the path in the existing map or planning the exploration in a partially unknown map and performing the p	an in the world. IN	PORTANT:
	tudents of this course have a working knowledge of optimization (Gauss-Newton method, Levenberg Marquardt method, full Newton m		
(gradient, Jacobia	n, Hessian), linear algebra (least-squares method), probability theory (multivariate gaussian probability), statistics (maximum likeliho	od and maximum a	aposteriori
	estimate), python programming and machine learning algorithms.		
B3M33MKR	Mobile and Collective Robotics	Z,ZK	6
The course introdu	ices a basic mobile robot structure design together with control methods aimed to achieve autonomous and collective behaviors for r	obots. Methods an	d tool s for
data acquisition	and processing are presented herein with the overall goal to resolve the task of autonomous navigation for mobile robots comprising	the tasks of sense	or fusion,
environmental mod	eling including Simultaneous Localization And Mapping (SLAM) approaches. Besides sensor-processing related tasks, methods for re	obot trajectory plar	nning will be
	tral topic of the course stands in specific usage of the afore methods capable of execution with groups of robots and taking the adva	•	
coordination in grou	ips. Labs and seminars are organized in a form of an Open Laboratory whereas the students will implement some fundamental algorit	nms and study thei	r properties
	on real data.		
B3M33PIS	Industrial Information Systems	Z,ZK	6
The aim of this cou	se is to provide students with the necessary set of skills essential for the design and management of modern production systems. In	the first part of the	course, the
students will learn	about methods of modeling and simulation of discrete production systems. Students will then gain insight into methods for data analy	sis to optimize the	production
as well as into me	thods for process mining. The final part of the course deals with methods of data and knowledge modeling, which are necessary for	explicit capture and	d machine
	utilization of information and knowledge about production.		
B3M33PRO	Advanced robotics	Z,ZK	6
We will explain and	demonstrate techniques for modelling, analyzing and identifying robot kinematics. We will explain more advanced principles of the rep	resentation of moti	ion in space
and the robot desc	iptions suitable for identification of kinematic parameters from measured data. We will explain how to solve the inverse kinematic tas	k of 6DOF serial m	anipulators
a	nd how it can be used to identify its kinematic parameters. Theory will be demonstrated on simulated tasks and verified on a real indu	ustrial robot.	

B3M33UI	Artificial Intelligence	Z,ZK	6
	is and enriches knowledge of Al gained in the bachelor course Cybernetics and Artificial Intelligence. Students will get an overview of		
-	experience with some of them. They will master other required abilities to build intelligent agents. By applying new models, they will r techniques to evaluate models, and methods for overfitting prevention. They will learn about planning and scheduling tasks, and abou		
	get ackquainted with the basics of probabilistic graphical models, Bayesian networks and Markov models, and will learn their applica		
	introduce students to the area of again populat neural networks, with an emphasis to new methods for deep learning.	and the start of the st	
B3M35DRS	Dynamics and Control Networks	Z,ZK	6
	sponds to an ever-increasing demand for understanding contemporary networks large-scale complex systems composed of many co	I ' I	1
	o a single distributed entity. Herein, we will consider fundamental similarities between diverse areas such as e.g. forecasting the sprea	-	-
opinion dynamics a	nd manipulation of communities through social media, formation controls for unmanned vehicles, energy generation and distribution in p	ower grids, etc. Un	derstanding
such compelling	issues goes far beyond the boundaries of any single physical, technological or scientific domain. Therefore, we will analyze phenome	na across different	domains,
-	economic and biological networks. For such networked systems, the resulting behavior depends not only on the characteristics of the		
	vsical or logical interactions, but also on a precise way those components are interconnected the detailed interconnection topology. For		
	uces fundamental theoretical and abstract computational network analysis concepts; in particular, the algebraic graph theory, network		
fundamental netwo	ork algorithms. The second part of the course subsequently views networks as dynamical systems, studies their properties and ways using mainly methods of automatic control theory.	in which these are	controlled,
B3M35LSY		Z,ZK	8
	Linear Systems is course is to introduce mathematical tools for the description, analysis, and partly also synthesis, of dynamical systems. The focus v	I	1
	utput systems and their properties such as stability, controllability, observability and state realization. State feedback, state estimation		
	explained in detail. Partially covered will be also time-varying and nonlinear systems. Some of the tools introduced in this course are re	-	-
	the analysis of controllability and observability in the design of flexible space structures, the design of state feedback in aircraft control	2 11	0 0
	n motivation, however, is to pave the way for the advanced courses of the study program. The prerequsites for this course include under	,	
	differential equations, and Laplace and z transforms.	•	
B3M35NES	Nonlinear Systems and Chaos	Z,ZK	6
	irse is to introduce basics of the modern approaches to the theory and applications of nonlinear control. Fundamental difference when	I	ear systems
control compared	with linear case is that the state space approach prevails. Indeed, the frequency response approach is almost useless in nonlinear co	ontrol. State space	models are
based mainly on or	dinary differential equations, therefore, an introduction to solving these equations is part of the course. More importantly, the qualitative n	nethods for ordinar	y differential
equations will be p	resented, among them Lyapunov stability theory is crucial. More specifically, the focus will be on Lyapunov function method enabling t	o analyse stability	of nonlinear
systems, not on	y that of linear ones. Furthemore, stabilization desing methods will be studied in detail, among them the so-called control Lyapunov f	unction concept an	nd related
	hod. Special stress will be, nevertheless, given by this course to introduce and study methods how to transform complex nonlinear m	-	
	ar methods would be applicable. Such an approach is usually refered to as the so-called exact nonlinearity compensation. Contrary t		
linearization this	method does not ignore nonlinearities but compensates them up to the best possible extent. The course introduces some interesting	case studies as we	ell, e.g. the
	planar vertical take off and landing plane ("planar VTOL"), or a simple 2-dimensional model of the walking robot.		
B3M35OFD	Estimation, filtering and detection	Z,ZK	6
	wer description of the uncertainty of hidden variables (parameters and state of a dynamic system) using the probability language and		
-	an problem formulation principles of rational behavior under uncertainty will be analyzed and used to develop algorithms for parameter		
Gaussian proces	s regression), filtering (Kalman filter) and detection (likelihood ratio theory). We will demonstrate numerically robust implementation o real life problems for the areas of industrial process control, robotics and avionics.	i the algorithms ap	plicable in
B3M35ORR	Optimal and Robust Control	Z,ZK	6
		Z,ZK	6
B3M35PSR	Real -Time Systems Programming purse is to provide students with basic knowledge about software development for real-time systems, for example in control and embe		-
-	stems equipped with a real-time operating system (RTOS). Lectures will cover real-time systems theory, which can be used to format		
-	nother set of lectures will introduce methods and techniques used for development of safety-critical systems, whose failure may have		
-	ts will first solve a few simple tasks to familiarize themselves with basic components of VxWorks RTOS and to benchmark the used C	-	-
-	cs represent the typical criteria for assessing the suitability of a given platform for the given application. After the simple tasks, studer		
time-c	ritical motion control application which will require full utilization of RTOS features. All the tasks at the labs will be implemented in C (or	or C++) language.	
B3M35SRL	Flight Control Systems	Z,ZK	6
The course is dev	oted to classical and modern control design techniques for autopilots and flight control systems. Particular levels are discussed, start	ing with the dampe	ers attitude
angle stabilizers, to	o guidance and navigation systems. Next to the design itself, important aspects of aircraft modelling, both as a rigid body and consider	ering flexibility of th	e structure,
	are discussed.		
B3M37KIN	Space Engineering	Z,ZK	6
	ints students with the basics of physics of the space environment and the technologies used in space systems, satellites, spacecraft		
	and preparation of space missions. Subject matter includes a detailed description of the instrumentation of satellites and spacecraft		
	pace environment, and analysis of instruments and systems for spacecratfts and methods of their testing. It provides a basic overview o		•
and their applicati	ons. The course also covers optoelectronics in space systems, sensors used, their modeling and description. It discusses the principle	es of underlying ca	alculations,
	simulations and their processing.		
B3M37LRS	Aeronautical radio systems	Z,ZK	6
	duces students to the aeronautical radio engineering, aeronautical analogue, digital and satellite communication systems, aeronautic n, primary secondary and passive radiolocation. The course gets students theoretical and practical knowledge of the operation of the a	-	-
satellites havigation	their integration to the aircraft systems.		systems and
B3M38DIT	Diagnostics and Testing	Z,ZK	7
B3M38INA	Integrated Avionics	Z,ZK Z,ZK	6
	ted Modular Avionics (IMA) focuses on a modern concept of the approach to the development and design of aircraft electronics (avior	I	-
-	systems to SW blocks. They use high-speed connections to exchange data in applications related to paid air transport. The existing re	-	
	e requirements for the accuracy, reliability, and functionality of electronic systems even in the event of a failure. In the course, student		-
-	o-called safety-critical multi-sensor systems, methods of data processing from predetermined systems, fault detection methods, selection and the second s		
	control system in parallel architectures, bus technology, and methods of testing/certification of aircraft instruments.	,	
B3M38MSE	Modern Sensors	Z,ZK	6
	An overview of sensors of physical quantities used in industry and in research and methods of signal processing.		
B3M38PSL	Aircraft Avionics	Z,ZK	6
	used into a field of aircraft avionics including principles, sensors, measurement and evaluation systems and signal/data processing m	i ' i	-
	systems, i.e. engine and aircraft monitoring systems, power systems, pressure-based systems, low-frequency navigation means, and	-	-

introduces currently used technology and methodology on aircraft and thus serves to understand fundamentals of avionics. Inertial navigation systems are discussed in more details as well as their aiding systems and sensors. The course focuses on both small and large aircraft as well as on UAV suited avionics. B3M38SPD Data Acquisition and Transfer Z,ZK 6 The aim of the course is to acquaint students with principles and limits of data transmission from sensors and similar sources of information for IoT and M2M, wireless sensor networks and specific algorithms, respecting the limiting conditions of their function. The basic algorithms of distributed information processing in sensor networks, as well as technology for energy harvesting for powering the wireless nodes of the network, will be studied. Z,ZK B3M38VBM Videometry and Contactless Measurement 6 This course focuses on CCD and CMOS video sensors, and optoelectronic sensors in general and their use in contactless videometric measurement systems. Further optical radiation, its features, behavior and its use for acquiring object parameters, optical projection system, design of measurement cameras and processing of their signal will be presented. Students will design, realize and debug an independent project - 'Optoelectronic reflective sensor', during labs. D2M20\/INI 7 74 Virtual Instrumentation

B3M38VIN	Virtual Instrumentation	Z,ZK	6
B3M38ZDS	Analog Signal Processing and Digitalization	Z,ZK	6
B3MPROJ8	Project	Z	8
B3MPVT		KZ	6
Teamwork is the ba	asis of most of the activities that people perform in companies and their personal lives. In this course, students can try how to solve a	technical task in a	a team, how
to	o cooperate, how to communicate together and how to solve problems such as project delays, how to include external influences in t	he plan, etc.	
BDIP30	Diploma Thesis	Z	30
	Diploma Thesis comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or l	Z ner branch of study	
Independent final of	l I		y, which will
Independent final of	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or l		y, which will
Independent final of be specified b	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or l by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examin	y, which will nation.

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u>

Generated: day 2025-07-20, time 08:25.