Recomended pass through the study plan

Name of the pass: SpaceMaster - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Erasmus Mundus Master Course - SpaceMaster II Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of semes	ster: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)		Credits	Scope	Semester	Role
XE35CSP	CanSat-Projekt	Z,ZK	8	2P+2S	Z	Р
XE35ISP	Introduction in Space Physics	Z,ZK	8	2P+2S	Z	Р
XE35SDY	Space Dynamics	Z,ZK	4	2P+2S	Z	Р
XE35SSD	Spacecraft System Design	Z,ZK	8	2P+2S	Z	Р
2016_SPACEMASTERPV1	Compulsory optionally subjects XE35ADT,XE35ITG, (see the list of groups below)	Min. cours. 1 Max. cours. 3	Min/Max 3/11			PV

Number of semes	ster: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
XE35ELS	Electronics in Space	Z,ZK	7	2P+2S	L	Р
XE35ORO	Optic- and Radar-based Observations	Z,ZK	8	2P+2S	L	Р
XE35SPP	Space Physics	Z,ZK	8	2P+2C	Z	Р
XE35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	Р

Number of semes	ster: 3					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
XE35CSA	Theory of Dynamic Systems	Z,ZK	7	3P+1S	Z	Р
XE35IDP	Individual design project	Z	8	6S	Z	Р
XE35SSM	Space systems, modeling and identification	Z,ZK	7	3P+1S	Z	Р

Number of semester: 4

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
XE35DIP	Diploma Thesis	Z	30	14S	L	Р
XE35ORC	Optimal and robust control design	Z,ZK	8	3P+1C	L	Р

List of groups of courses of this pass with the complete content of members of individual groups

Kód		Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)			Com	pletion	Credit	s Scope	Semester	Role
2016_SPACEMASTERPV1					Min.	cours.				
		Compulsory optionally subjects				1 Min/Max		ax		<u> </u>
					Max. cours.		3/11			PV
						3				
XE35ADT	Advanced	Databases	XE35ITG	Internet Technologies		XE35OOA		Object-oriented appro		d Jav

List of courses of this pass:

Code	Name of the course			
XE35ADT	Advanced Databases	ZK	3	
XE35CSA	Theory of Dynamic Systems	Z,ZK	7	
System Approach.	Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Lin	ear Systems. Syst	em Stability,	
Uncertai	nty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of St	ochastic Processes	s.	
XE35CSP	CanSat-Projekt	Z,ZK	8	
XE35DIP	Diploma Thesis	Z	30	
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or	her branch of study	, which will	
be specified b	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examir	nation.	
XE35ELS	Electronics in Space	Z,ZK	7	
XE35IDP	Individual design project	Z	8	
Independent work	in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be speci	fied by branch dep	artment or	
	branch departments. The project will be defended within the framework of a subject.			
XE35ISP	Introduction in Space Physics	Z,ZK	8	
XE35ITG	Internet Technologies	Z,ZK	4	
XE35OOA	Object-oriented approach and Java programming	Z,ZK	4	
XE35ORC	Optimal and robust control design	Z,ZK	8	
This advanced cou	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computatio	nal design skills. U	nifying idea	
	t of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante	•		
	LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains			
	an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull t		•	
•	aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c			
of semidefinite prog	rramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational t introduced tasks in optimal and robust control.	ool for solving all th	e previously	
XE35ORO	Optic- and Radar-based Observations	Z,ZK	8	
XE35SDY	Space Dynamics	Z,ZK	4	
XE35SEI	Spacecraft Environment Interactions	Z,ZK	7	
XE35SPP	Space Physics	Z,ZK	8	
XE35SSD	Spacecraft System Design	Z,ZK	8	
XE35SSM	Space systems, modeling and identification	Z,ZK	7	

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-20, time 16:22.