Recomended pass through the study plan

Name of the pass: Specialization Artificial Intelligence - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Open Informatics - Artificial Intelligence Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of seme	ester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Radek Havlí ek, Ivana Nová, Josef ernohous, Pavel Mlejnek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z	Р
B4M33PAL	Advanced algorithms Marko Genyk-Berezovskyj, Daniel Pr ša, Ond ej Drbohlav Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PO
B4M36MAS	Computational Game Theory Tomáš Kroupa, Michal Jakob, Ond ej Kubí ek, Tomáš Votroubek Tomáš Kroupa Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	Z	PO
2018_MOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of sem	ester: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Ρ
B4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Ρ
B4M36PUI	Artificial Intelligence Planning Rostislav Hor ík Rostislav Hor ík Michal P chou ek (Gar.)	Z,ZK	6	2P+2C	L	PO
B4M36SMU	Symbolic Machine Learning Filip Železný, Ond ej Kuželka, Gustav Šír Ond ej Kuželka Ond ej Kuželka (Gar.)	Z,ZK	6	2P+2C	L	PO
2018_MOIVOL	Volitelné odborné p edm ty	Min. cours.	Min/Max			V
		0	0/999			v

Number of semes	ster: 3					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4MSVP	Software or Research Project Ivan Jelínek, Jaroslav Sloup, Ji í Šebek, Martin Šipoš, Drahomíra Hejtmanová, Jana Zichová, Petr Pošík, Martin Hlinovský, Katarína Žmolíková, Ivan Jelínek Ivan Jelínek (Gar.)	κz	6		Z,L	Р

B4M36LUP	Logical Reasoning and Programming Ond ej Kuželka, Karel Chvalovský Filip Železný Filip Železný (Gar.)	Z,ZK	6	2P+2C	Z	PO
B4M36UIR	Artificial Intelligence in Robotics Miloš Prágr, Jan Faigl Jan Faigl Jan Faigl (Gar.)	Z,ZK	6	2P+2C	Z	PO
2018_MOIVOL		Min. cours.	Min/Max			
	Volitelné odborné p edm ty	0	0/999			V

Number of semester: 4						
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р
2018_MOIVOL	Mallfalo é a dhaona é na adua (na	Min. cours. Min/Max 0 0/999		V		
	Volitelné odborné p edm ty			v		

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
2018_MOIVOL		Min. cours.	Min/Max			
	Volitelné odborné p edm ty	0	0/999		V	

List of courses of this pass:

Code Name of the course Completion C	redits						
B4M01TAL Theory of Algorithms Z,ZK	6						
The course brings theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems, secondly on the correctness							
of algorithms. Further it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of them investigated. Proba	abilistic						
algorithms are studied and the classes RP and ZZP introduced.							
B4M33PAL Advanced algorithms Z,ZK	6						
Basic graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - pattern matching.							
B4M35KO Combinatorial Optimization Z,ZK	6						
The goal is to show the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term operations research). For	Following						
the courses on linear algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programming, heuristics, approxim	mation						
algorithms and state space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, planning of human resources of the state space search methods.	ources,						
scheduling in production lines, message routing, scheduling in parallel computers.							
B4M36LUP Logical Reasoning and Programming Z,ZK	6						
The course's aim is to explain selected significant methods of computational logic. These include algorithms for propositional satisfiability checking, logical programming in Prol	olog, and						
first-order theorem proving and model-finding. Time permitting, we will also discuss some complexity and decidability issues pertaining to the said methods.							
B4M36MAS Computational Game Theory Z,ZK	6						
This course is designed to introduce students to the fundamental concepts and applications of game theory, a powerful tool used to model strategic interactions among indivi							
organizations, or countries. Throughout the course, we will delve into various aspects of game theory and explore its wide-ranging applications in diverse fields, including ma	achine						
learning and AI.							
B4M36PUI Artificial Intelligence Planning Z,ZK	6						
The course covers the problematic of automated planning in artificial intelligence and focuses especially on domain independent models of planning problems: planning as a							
in the space of states (state-space planning), in the space of plans (plan-space planning), heuristic planning, planning in graph representation of planning problems (graph-p							
hierarchical planning. The students will also learn about the problematic of planning under uncertainty and the planning model as a decision-making in MDP and POMD							
B4M36SMU Symbolic Machine Learning Z,ZK	6						
This course consists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its environment, also know							
reinforcement learning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inference. The third part will o							
fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an							
introduction to several topics from the computational learning theory, including the online and batch learning settings.							
B4M36UIR Artificial Intelligence in Robotics Z,ZK	6						
The course aims to acquaint students with the use of planning approaches and decision-making techniques of artificial intelligence for solving problems arising in autonomous robotic							
systems. Students in the course are employing knowledge of planning algorithms, game theory, and solving optimization problems in selected application scenarios of mobile robotics.							
Students first learn architectures of autonomous systems based on reactive and behavioral models of autonomous systems. The considered application scenarios and robotic problems							
include path planning, persistent environmental monitoring, robotic exploration of unknown environments, online real-time decision-making, deconfliction in autonomous systems, and solutions of antagonistic conflicts. In laboratory exercises, students practice their problem formulations of robotic challenges and practical solutions in a realistic robotic simulator or							

consumer mobile robots. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

B4MSVP	Software or Research Project	KZ	6		
BDIP25	Diploma Thesis	Z	25		
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h	ner branch of study	, which will		
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh-	ensive final examir	nation.		
BE4M33SSU	Statistical Machine Learning	Z,ZK	6		
The aim of statistic	cal machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	or knowledge about	ut the task.		
This includes typica	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	pts such as risk m	inimisation,		
maximum likelihood	estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	on and regression a	and to show		
	how they can be learned by those concepts.				
BEZM	Safety in Electrical Engineering for a master's degree	Z	0		
The course provides for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical hazard of given branch of study.					
Students receive indispensable qualification according to the current Directive of the Dean.					

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-06-06, time 13:29.