Recomended pass through the study plan

Name of the pass: Specialization Electronics - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Electronics and Communications - Electronics Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Electronics and Communications Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of sem	nester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE2M31DSPA	Digital Signal Processing Petr Pollák Petr Pollák Petr Pollák (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
BE2M34SIS	Integrated System Structures Ji í Jakovenko, Vladimír Janí ek Ji í Jakovenko Ji í Jakovenko (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
BE2M37MAM	Microprocessors Stanislav Vítek Stanislav Vítek (Gar.)	Z,ZK	6	2P+2L	Z	Ρ
BEEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Ivana Nová, Josef ernohous, Radek Havlí ek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	z	Ρ
BE2M34SST	Solid State Physics Jan Voves Jan Voves Jan Voves (Gar.)	Z,ZK	6	3P+1L	Z	Р
BE2M34NSV	VLSI System Design Pavel Hazdra Pavel Hazdra (Gar.)	Z,ZK	6	2P+2L	Z	Ρ

Number of seme	ester: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE2M17CADA	CAD in HF Technique Zbyn k Škvor Zbyn k Škvor Zbyn k Škvor (Gar.)	Z,ZK	6	2P+2C	L	Ρ
BE2M34NIS	Design of Integrated Circuits Vladimír Janí ek Vladimír Janí ek Ji í Jakovenko (Gar.)	Z,ZK	6	2P+2C	L	Ρ
BE2M34MST	Microsystems Miroslav Husák, Alexandr Laposa, Adam Bou a Miroslav Husák Miroslav Husák (Gar.)	Z,ZK	6	2P+2L	L	Ρ
BE2M34NANA	Nanoelectronics and Nanotechnology Jan Voves Jan Voves Jan Voves (Gar.)	Z,ZK	6	2P+2C	L	Ρ
BE2M32BTSA	Wireless Technologies Zden k Be vá , Lukáš Vojt ch, Zbyn k Kocur, Pavel Mach Ján Ku erák Zden k Be vá (Gar.)	Z,ZK	6	2P + 2L	Z,L	Ρ

Number of semes	ster: 3					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE2M34ZETA	Custom Electronics Design Vladimír Janí ek Vladimír Janí ek (Gar.)	кz	6	2P+2L	Z	Р
BE2M34EZSA	Electronic Security Systems Miroslav Husák, Tomáš Teplý Miroslav Husák Miroslav Husák (Gar.)	Z,ZK	6	2P+2C	Z	Р

BE2M34PIOA	Planar Integrated Optics Vít zslav Je ábek, Václav Prajzler Václav Prajzler Václav Prajzler (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE2MPROJ6	Project Zden k Be vá, Jan Šístek, Pavel Máša, Ivan Pravda, Lubor Jirásek, František Rund František Rund František Rund (Gar.)	Z	6	0p+6s		Р
2018_MEKEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of semester: 4							
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role	
BDIP25	Diploma Thesis	Z	25	22s	L	Р	
2018_MEKEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V	

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
2018_MEKEVOL	KEVOL Elective subjects	Min. cours.	Min/Max			.,
		0	0/999			v

List of courses of this pass:

BDIP25 Diploma Thesis Z 25 Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of student, which will be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examines for the comprehensive final examination. Z Z/Z 6 BE2M17CADA CAD in HF Technique Z,ZK 6 The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing). distret-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their applications. Students will understand architecture, principles and torto active site was a filter to analysis. Further details can be found at 81;a NereI+http://noel.feld.cvut.cz/vyu/be2m31dspa&t/ta> 6 The lectures give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and to to applyoment of wireless networks their operation or development of wireless networks components. Z,ZK 6 BE2M32ETSA Electronic Security Systems Z,ZK 6 for safety The subject describes the system design, electronic solutions, conception characteristics, reliability wireless networks component	Code	Name of the course	Completion	Credits					
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination. BEZM17CADA CAD in HF Technique Z,ZK 6 BE2M31DSPA Digital Signal Processing Z,ZK 6 The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing): distarte-time signals and systems, signal characteristics in time and frequency domain, feourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at 81ta thref=http://noel.feld.cvut.cz/vyu/be2m31dspa>/thg//noel.feld.cvut.cz/vyu/be2m31dspa>/ta>/. 6 BE2M32BTSA Wireless Technologies Z,ZK 6 The lectures give overview of fundamental principles of wireless networks in various arreas of their applications. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. 6 BE2M34EZSA Electronic Security Systems Z,ZK 6 The souget describes the system design, electronic solutions, conception characteristics, reliability and its increases reliability with all its attributes. The c	BDIP25	Diploma Thesis	Z	25					
BE2M17CADA CAD in HF Technique Z,ZK 6 Introduction into principles and techniques used in modern microwave circuit design. Digital Signal Processing Z,ZK 6 BE2M31DSPA Digital Signal Processing Z,ZK 6 The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing): disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at &ta href=http://noel.feld.cvut.cz/vyube2m31dspa>http://noel.feld.cvut.cz	Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will								
Introduction into principles and techniques used in modern microwave circuit design. Z,ZK 6 BE2M31DSPA Digital Signal Processing Z,ZK 6 The subject gives overview about basic methods of digital signal processing and their applications (examples from spech and biological signal processing): disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and their opagital spa>.http://noel.feld.cvut.cz/vyu/be2m31dspa>.aster. 6 BE2M32BTSA Wireless Technologies Z,ZK 6 The lectures give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. Z,ZK 6 BE2M34EZSA Electronic Security Systems Z,ZK 6 The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic security system solutions of neoteneous systems and micropacessors. It offers practical applications uitable for safety systems integration applied in the design of digital and analog systems. It demonstrates th	be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.								
BE2M31DSPA Digital Signal Processing Z,ZK 6 The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing): disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DF1 computation, introduction to digital filter design, digital filterings in time and frequency domain, decimation and their usage in filter banks, basics of LPC analysis. Further details can be found at &t::a href=http://noel.feld.cvut.cz/vyu/be2m31dspa>http://noel.feld.c	BE2M17CADA	CAD in HF Technique	Z,ZK	6					
The subject gives overview about basic methods of digital signal processing and their applications (examples from speech and biological signal processing): disrete-time signals and systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and their usage in filter banks, basics of LPC analysis. Further details can be found at .http://noel.f</td"><td></td><td>Introduction into principles and techniques used in modern microwave circuit design.</td><td>·</td><td></td>		Introduction into principles and techniques used in modern microwave circuit design.	·						
systems, signal characteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter design, digital filtering in time and frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at &It:a href=http://noel.feld.cvut.cz/vyu/be2m31dspa>http://noel.feld.cvut.cz/vyu/be2m31	BE2M31DSPA	Digital Signal Processing	Z,ZK	6					
frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be found at &Ita http://noel.feld.cvut.cz/vyu/be2m31dspa>http://noel.feld.cvut.cz/vyu/be2m31dspa&It/a>. BE2M32BTSA Z,ZK 6 The lectures give overview of fundamental principles of wireless networks in various areas of their application. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. Z,ZK 6 BE2M34EZSA Electronic Security Systems Z,ZK 6 The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microsyntemy, which ere are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. 6 BE2M34MST Nanoelectronics and Nanotechnology Z,ZK 6 Microsystems It reports anotechnologis and learn how these if applications in biozes applicat	The subject gives of	overview about basic methods of digital signal processing and their applications (examples from speech and biological signal process	sing): disrete-time	signals and					
Interl=http://noel.feld.cvut.cz/vyu/be2m31dspa>http://noel.feld.cvut.cz/vyu/be31dspa&	systems, signal c	naracteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter desig	n, digital filtering ir	n time and					
BE2M32BTSA Wireless Technologies Z,ZK 6 The lectures give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. BE2M34EZSA Electronic Security Systems Z,ZK 6 The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical applications suitable for safety systems of houses, cars, industry companies. Z,ZK 6 BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application, in micromanipulation, microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in microanalpulation, microactuators, microactuators, whose operation is based on fundamental physical and biochemical principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6		frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be foun	d at <a< td=""><td></td></a<>						
Becurve give overview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, principles and protocols used in different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. BE2M34EZSA Electronic Security Systems Z,ZK 6 The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical applications suitable for safety systems of houses, cars, industry companies. BE2M34MST 6 BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles of touch screes, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6 The subject is orinented on the present nanotechnologis in the		href=http://noel.feld.cvut.cz/vyu/be2m31dspa>http://noel.feld.cvut.cz/vyu/be2m31dspa .							
different wireless technologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve problems related to deployment of wireless networks, their operation or development of wireless networks components. BE2M34EZSA Electronic Security Systems Z,ZK 6 The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical applications suitable for safety systems of houses, cars, industry companies. Z,ZK 6 BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and applications in micromanipulation, microsuber, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles, including basic applications in micromanipulation, microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures.	BE2M32BTSA	Wireless Technologies	Z,ZK	6					
of wireless networks, their operation or development of wireless networks components. BE2M34EZSA Electronic Security Systems Z,ZK 6 The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical applications suitable for safety systems of houses, cars, industry companies. BE2M34MST Z,ZK 6 BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability mital its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microorbots, microardrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electronic services and basic microsystem technologies. BE2M34NANA Nanoelectronics and Nanotechnology and nanoelectronic structures and basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures are described with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed	The lectures give of	verview of fundamental principles of wireless networks in various areas of their application. Students will understand architecture, pr	inciples and protoc	cols used in					
BE2M34EZSA Electronic Security Systems Z,ZK 6 The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical applications suitable for safety systems of houses, cars, industry companies. BE2M34MST C,ZK 6 BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. E22M34NANA 6 BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures are described with their possible applications. Modern computer methods and models, which are able to simulat	different wireless te	chnologies and learn how these technologies can be exploited in real world applications. The goal is to teach students how to solve p	roblems related to	deployment					
The subject describes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety systems. It reports solutions of electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical applications suitable for safety systems of houses, cars, industry companies. BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6 BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures are described with their possible applications. Modern computer methods and models, which are able to simulate the operation of nanoelectro		of wireless networks, their operation or development of wireless networks components.							
electronic sensor systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical applications suitable for safety systems of houses, cars, industry companies. BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6 BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. Z,ZK 6 BE2M34NIS Design of Integrated Circuits Z,ZK 6	BE2M34EZSA	Electronic Security Systems	Z,ZK	6					
BE2M34MST X,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6 BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures are described with their possible applications. Modern computer methods and models, which are able to simulate the operation of nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. Z,ZK 6 BE2M34NIS Design of Integrated Circuits Z,ZK 6	The subject descril	pes the system design, electronic solutions, conception characteristics, reliability and its increasing of electronic security and safety s	systems. It reports	solutions of					
BE2M34MST Microsystems Z,ZK 6 The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6 BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. Z,ZK 6 BE2M34NIS Design of Integrated Circuits Z,ZK 6	electronic sensor	systems and methods of security system design, usage of modern electronic components and microprocessors. It offers practical ap	oplications suitable	for safety					
The course deals with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation and application of integrated microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. Z,ZK 6 BE2M34NANA Nanoelectronic structures and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. Z,ZK 6 BE2M34NIS Design of Integrated Circuits Z,ZK 6		systems of houses, cars, industry companies.							
microelectronic devices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its attributes. The course presents the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. Z,ZK 6 BE2M34NIS Design of Integrated Circuits Z,ZK 6	BE2M34MST	Microsystems	Z,ZK	6					
the modern action elements and microactuators, whose operation is based on fundamental physical and biochemical principles, including basic applications in micromanipulation, microrobots, microgenerators, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. Z,ZK 6 BE2M34NIS Design of Integrated Circuits Z,ZK 6	The course deals	with system integration applied in the design of digital and analog systems. It demonstrates the new possibilities of implementation a	and application of i	ntegrated					
microrobots, microdrives, microsurgery, multimedia, medical, industrial control, automotive, etc. In the course are presented the principles of touch screens, microgenerators of electrical energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. BE2M34NIS Design of Integrated Circuits Z,ZK 6	microelectronic dev	ices based on various physical and biochemical principles. It presents primarily MEMS technology that increases reliability with all its a	attributes. The cour	se presents					
energy. There are mentioned basic elements of the use of nanotechnology and nanoelectronic structures and basic microsystem technologies. BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. BE2M34NIS Design of Integrated Circuits Z,ZK 6				-					
BE2M34NANA Nanoelectronics and Nanotechnology Z,ZK 6 The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures are described with their possible applications. Modern computer methods and models, which are able to simulate the operation of nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. Z,ZK 6 BE2M34NIS Design of Integrated Circuits Z,ZK 6	microrobots, microo			of electrical					
The subject is oriented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory basics are used to explain the effects observed in nanostructures. Basic nanoelectronic structures are described with their possible applications. Modern computer methods and models, which are able to simulate the operation of nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. BE2M34NIS Design of Integrated Circuits Z,ZK 6			hnologies.						
effects observed in nanostructures. Basic nanoelectronic structures are described with their possible applications. Modern computer methods and models, which are able to simulate the operation of nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. BE2M34NIS Design of Integrated Circuits Z,ZK 6	BE2M34NANA	Nanoelectronics and Nanotechnology	Z,ZK	6					
the operation of nanoelectronic structures and which are the important tools for their design and optimalisation, are studied. BE2M34NIS Design of Integrated Circuits Z,ZK 6	The subject is orie	ented on the present nanotechnologies in the connection with their electronic, photonic and spintrinic applications. Quantum theory b	asics are used to e	explain the					
BE2M34NIS Design of Integrated Circuits Z,ZK 6	effects observed in			to simulate					
		the operation of nanoelectronic structures and which are the important tools for their design and optimalisation, are studied	1.						
Main tacks of integrated size its designer; design obstraction levels. V obst. Definitions of appointion, feasibility study, aritaria for technology and design kits selection. Integrated	BE2M34NIS	Design of Integrated Circuits	Z,ZK	6					
		grated circuits designer; design abstraction levels - Y chart. Definitions of specification, feasibility study, criteria for technology and de	•	•					
systems design and simulation methodologies. Main features of full custom design, gate array, standard cells, programmable array logic. Design aspects of RF and mobile low power	systems design an	d simulation methodologies. Main features of full custom design, gate array, standard cells, programmable array logic. Design aspect	s of RF and mobile	e low power					

systems. Verilog-A, Verilog-AMS, VHDL-A. Logic and physical synthesis. Frond End and Back End design. Floorplanning, place and route, layout, parasitic extraction, time analysis,

	testbenches design and verification.					
BE2M34NSV	VLSI System Design	Z,ZK	6			
Introduction to bas	sic building blocks, architecture and design methodologies of advanced VLSI systems. Structure and design of digital and analogue in	ntegrated circuit su	bsystems.			
Integrated system	description and synthesis using cell libraries and IP cores. Synchronization, power consumption and parasitics reduction issues. Testi	ng and reliability o	f integrated			
systems.	n seminars and labs, the hardware description language VHDL will be explained and used for practical design, synthesis and testing	of a system on ch	ip.			
BE2M34PIOA	Planar Integrated Optics	Z,ZK	6			
	ribes theoretical and technological principles and design of planar integrated optics and optoelectronics as optical dividers, The stude					
	ht propagation in planar waveguide and with basic devices and structures of integrated optics and optoelectronics as coupling eleme	-				
planar optical trans	mitters an receivers with SS-LD, WG-PD. In the course are integrated devices and structures for telecommunication for multiplexing	• •	sing. There			
	are optical elements for physical and chemical sensor application and basic important measurement and diagnostic method					
BE2M34SIS	Integrated System Structures	Z,ZK	6			
Student learn ma	in design methodologies of analog, digital and optoelectronic integrated systems; Detailed description of the technological process for	or the IC productio	n; CMOS			
tec	hnologies and its advanced sub-micron trends; IC chip topology, layout and design rules; Technology of micro-electro-mechanical system	stems MEMS.				
BE2M34SST	Solid State Physics	Z,ZK	6			
	The subject is aimed on solid state physics including some parts of statistical physics.					
BE2M34ZETA	Custom Electronics Design	KZ	6			
The course deals	with the design methodology of advanced custom electronics. The aim is to convert theoretical knowledge of previous studies into sp	pecific proposals for	r practical			
applications. Stude	nt are getting familiar with the problems encountered in the professional electronic design and manufacturing. This course is based on r	eal experience in d	evelopment			
	and production, showing the latest technological trends and component base.					
BE2M37MAM	Microprocessors	Z,ZK	6			
The aim is to make	students acquainted with the properties of microprocessor systems, make students familiar with on-chip peripherals, connect extern	al circuit to the pro	cessor bus,			
and with implement	ation of the memory or I/O space address extension. Next, taught the students to make simple program in the assembly language, C	language and cor	nbination of			
both. After completion of this subject student should be able to design and implement simpler microprocessor system including connection of necessary peripherals and software						
	design.					
BE2MPROJ6	Project	Z	6			
Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or						
branch dep	artments. The project will be defended within the framework of a subject. List of possible topics: http://www.fel.cvut.cz/en/education/s	emestral-projects.h	ntml			
BEEZM	Safety in Electrical Engineering for a master's degree	Z	0			
The course provi	The course provides for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical hazard of given branch of study.					
Students receive indispensable qualification according to the current Directive of the Dean.						

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-08-13, time 05:13.