Recomended pass through the study plan

Name of the pass: Branch Computer Vision and Image Processing - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Open Informatics - Computer Vision and Image Processing Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L): KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of semester: 1

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
BEEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Ivana Nová, Josef ernohous, Radek Havlí ek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z	Р
BE4M33DZO	Digital Image Ond ej Drbohlav, Daniel Sýkora Daniel Sýkora (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PO
2018_MOIEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of seme	ster: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Р
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Р
BE4M33MPV	Computer Vision Methods Jan ech, Georgios Tolias, Ji í Matas, Dmytro Mishkin Ond ej Drbohlav Ji í Matas (Gar.)	Z,ZK	6	2P+2C	L	PO
BE4M33GVG	Geometry of Computer Vision and Graphics Torsten Sattler, Viktor Korotynskiy, Tomáš Pajdla Tomáš Pajdla Tomáš Pajdla (Gar.)	Z,ZK	6	2P+2C	L	PO
2018_MOIEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of semester: 3						
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	КZ	6		Z,L	Р

BE4M39VG	Computational Geometry Petr Felkel Petr Felkel (Gar.)	Z,ZK	6	2P+2S	Z	PO
BE4M33TDV	Three-dimensional Computer Vision Radim Šára Radim Šára Radim Šára (Gar.)	Z,ZK	6	2P+2C	Z	PO
2018_MOIEVOL	DIEVOL Elective subjects	Min. cours.	Min/Max			
		0	0/999			V

Number of semes	ster: 4					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р
2018_MOIEVOL	Elective subjects	Min. cours.	Min/Max			V
		0	0/999			v

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
2018_MOIEVOL	MOIEVOL Elective subjects	Min. cours.	Min/Max			
		0	0/999			v

List of courses of this pass:

Code	Name of the course	Completion	Credits					
BDIP25	Diploma Thesis	Z	25					
Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will								
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.								
BE4M01TAL	Theory of Algorithms	Z,ZK	6					
The course brings t	heoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems	s, secondly on the	correctness					
of algorithms. Furt	her it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of th	em investigated. P	robabilistic					
	algorithms are studied and the classes RP and ZZP introduced.							
BE4M33DZO	Digital Image	Z,ZK	6					
This course pres	ents an overview of basic methods for digital image processing. It deals with practical techniques that have an interesting theoretical	basis but are not	difficult to					
implement. Seem	ingly abstract concepts from mathematical analysis, probability theory, or optimization come to life through visually engaging applicat	tions. The course for	ocuses on					
fundamental princip	ples (signal sampling and reconstruction, monadic operations, histogram, Fourier transform, convolution, linear and non-linear filterin	g) and more advar	nced editing					
techniques, includ	ing image stitching, deformation, registration, and segmentation. Students will practice the selected topics through six implementatio	n tasks, which will	help them					
	learn the theoretical knowledge from the lectures and use it to solve practical problems.							
BE4M33GVG	Geometry of Computer Vision and Graphics	Z,ZK	6					
We will explain fur	damentals of image and space geometry including Euclidean, affine and projective geometry, the model of a perspective camera, in	hage transformation	ns induced					
	n, and image normalization for object recognition. The theory will be demonstrated on practical task of creating mosaics from images							
objects by a came	era, and reconstructing geometrical properties of objects from their projections. We will build on linear algebra and optimization and h	-	n for other					
	subjects such as computational geometry, computer vision, computer graphics, digital image processing and recognition of objects	in images.						
BE4M33MPV	Computer Vision Methods	Z,ZK	6					
The course covers	selected computer vision problems: search for correspondences between images via interest point detection, description and matchi	ng, image stitching	J, detection,					
e e	segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This							
inter-university pro	ogramme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field	of artificial intellige	nce. More					
	information is available at https://prg.ai/minor.							
BE4M33PAL	Advanced Algorithms	Z,ZK	6					
Basic	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - p	pattern matching.						
BE4M33SSU	Statistical Machine Learning	Z,ZK	6					
The aim of statistic	cal machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	or knowledge abou	ut the task.					
This includes typical tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning concepts such as risk minimisation,								
maximum likelihood estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification and regression and to show								
	how they can be learned by those concepts.							
BE4M33TDV	Three-dimensional Computer Vision	Z,ZK	6					
This course introduces methods and algorithms for 3D geometric scene reconstruction from images. The student will understand these methods and their essence well enough to be								
able to build variants of simple systems for reconstruction of 3D objects from a set of images or video, for inserting virtual objects to video-signal source, or for computing ego-motion								

trajectory from a sequence of images. The labs will be hands-on, the student will be gradually building a small functional 3D scene reconstruction system and using it to compute a

	virtual 3D model of an object of his/her choice.						
BE4M35KO	Combinatorial Optimization	Z,ZK	6				
The goal is to show the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term operations research). Followin							
the courses on li	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin	g, heuristics, appro	oximation				
algorithms and st	ate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pla	anning of human re	esources,				
	scheduling in production lines, message routing, scheduling in parallel computers.						
BE4M39VG	Computational Geometry	Z,ZK	6				
The goal of comput	ational geometry is analysis and design of efficient algorithms for determining properties and relations of geometric entities. The lecture	focuses on geome	etric search,				
point location, conve	ex hull construction for sets of points in d-dimensional space, searching nearest neighbor points, computing intersection of polygonal area	is, geometry of para	allelograms.				
New directions in algorithmic design. Computational geometry is applied not only in geometric applications, but also in common database searching problems.							
BE4MSVP	Software or Research Project	KZ	6				
Independent work of	on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching	diploma thesis and	the project				
advisor is the diplor	na thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and	not underestimati	ng its timely				
selection. The topic	of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defin	ed output, such as	a technical				
report or a compute	r program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one sub	ject of this type A	In exception				
may be granted	by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different	topic and is led by	/ another				
supervisor. A typica	I example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the co	ourse does not list	the course,				
then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be							
found on the website of the Department of Computer Graphics and Interaction http: //dcgi.felk. cvut.cz/cs/study/predmetprojekt.							
BEEZM	Safety in Electrical Engineering for a master's degree	Z	0				
The course provides for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical hazard of given branch of study.							

 Students receive indispensable qualification according to the current Directive of the Dean.

 For updated information see http://bilakniha.cvut.cz/en/f3.html

Generated: day 2025-08-13, time 05:13.