Recomended pass through the study plan

Name of the pass: Branch Cyber Security - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Open Informatics - Cyber Security Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of sem	ester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
BEEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Ivana Nová, Josef ernohous, Radek Havlí ek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	z	Ρ
BE2M32PST	Advanced Networking Technologies Leoš Bohá Leoš Bohá Leoš Bohá (Gar.)	Z,ZK	6	2P + 2L	Z,L	PO
BE4M36BSY	Introduction to Computer Security Sebastián García, Tomáš Pevný, Veronica Valeros, Ond ej Lukáš, Maria Rigaki, Martin epa, Lukáš Forst, Muris Sladi Tomáš Pevný Tomáš Pevný (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M36SAN	Statistical data analysis Ji í Kléma Ji í Kléma Ji í Kléma (Gar.)	Z,ZK	6	2P+2C	Z	PO
2018_MOIEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of seme	ester: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Ρ
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Ρ
BE4M36KBE	Communications Security Tomáš Van k Peter Macejko Tomáš Van k (Gar.)	Z,ZK	6	3P+2C	L	PO
BE4M01MKR	Mathematical Cryptography Alena Gollová Alena Gollová Ji í Velebil (Gar.)	Z,ZK	6	4P+2S	L	PO
2018_MOIEVOL	EVOL Elective subjects	Min. cours.	Min/Max			V
		0	0/999			v

Number of semester: 3							
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role	
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	КZ	6		Z,L	Р	

BE4M36ZKS	Software Quality Assurance Karel Frajták, Miroslav Bureš, Mat j Klíma Miroslav Bureš Miroslav Bureš (Gar.)	Z,ZK	6	2P+2C	Z	PO
2018_MOIEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of seme	ster: 4					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р
2018_MOIEVOL		Min. cours.	Min/Max			N
	Elective subjects	0	0/999			v

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
2018_MOIEVOL Elective subjects	Min. cours.	Min/Max			.,	
	Elective subjects	0	0/999			v

List of courses of this pass:

Code	Name of the course	Completion	Credits					
BDIP25	Diploma Thesis	Z	25					
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h	her branch of study	/, which will					
be specified b	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehenced	ensive final examir	nation.					
BE2M32PST	Advanced Networking Technologies	Z,ZK	6					
The "Advanced N	etwork Technologies" course is designed to expand students' insights into modern network technologies and deepen their understan	ding of advanced r	networking					
1.	a networks. Students will engage in practical exercises involving Internet unicast routing, multicast routing, IPv6, and MPLS network de		k simulation					
tools such as PacketTracer and EveNG. Given the course's emphasis on remote lab activities, instruction will predominantly be delivered online.								
BE4M01MKR	Mathematical Cryptography	Z,ZK	6					
The lecture will set	mathematical foundations of modern cryptography (RSA, EI-Gamal, elliptic curve cryptography, hashing). Also, the related algorithms	s for primality testin	ig (numbers					
	sieves) and discrete logarithms will be treated.							
BE4M01TAL	Theory of Algorithms	Z,ZK	6					
	heoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems							
of algorithms. Furt	her it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of th	em investigated. P	robabilistic					
	algorithms are studied and the classes RP and ZZP introduced.							
BE4M33PAL	Advanced Algorithms	Z,ZK	6					
	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - p							
BE4M35KO	Combinatorial Optimization	Z,ZK	6					
-	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term o							
	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl	•						
	scheduling in production lines, message routing, scheduling in parallel computers.	anning of numari n	55001065,					
BE4M36BSY	Introduction to Computer Security	Z.ZK	6					
	b teach students cybersecurity fundamentals by combining penetration testing with defense strategies. Using an innovative blend of l	I ' I	-					
	in highly interactive classes. Each new concept is immediately reinforced with hands-on exercises, allowing students to apply what the							
	emester, the course integrates both attack and defense techniques. In realistic scenarios accessed via a cyber range, students will pi							
e e	canning, exploiting vulnerabilities, privilege escalation, lateral movement, exfiltration, malware analysis, network security forensics, b	•	•					
intrusion detection	n systems, honeypots, and applications of machine learning and AI in cybersecurity. Classes are in English. Teachers speak English,	Czech, Spanish, C	Greek, and					
	Bosnian.							
BE4M36KBE	Communications Security	Z,ZK	6					
The course provide	s a complete source of information on the field of security of information systems and information technologies. The most of informat	ion in today's world	d is created,					
	in electronic form so information security is very important part of it. On successful completion of this course, students should be ab	,						
	c / asymmetric encryption, digital signatures, cryptographic hash function, and message authentication codes. They should be able t							
offered by the lat	test versions of the most important security protocols operating on the TCP/IP stack (IPsec, TLS, SSH, PGP) and describe known att	acks against these	security					
	protocols.							

BE4M36SAN	Statistical data analysis	Z,ZK	6						
This course builds d	This course builds on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly aims at multivariate statistical								
analysis and model	ling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a p	urely statistical co	unterpart to						
	machine learning and data mining courses.								
BE4M36ZKS	Software Quality Assurance	Z,ZK	6						
BE4MSVP	Software or Research Project	KZ	6						
Independent work of	n a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching	diploma thesis and	d the project						
advisor is the diplor	na thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and	not underestimati	ng its timely						
selection. The topic	of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defin	ed output, such as	a technical						
report or a compute	r program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one sub	ject of this type A	In exception						
, ,	by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different								
	I example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the co								
then at the depart	ment 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and e	laborating the proj	ect can be						
	found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk.cvut.cz/cs/study/predmetprojekt.								
BEEZM	Safety in Electrical Engineering for a master's degree	Z	0						
The course provi	The course provides for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical hazard of given branch of study.								
	Students receive indispensable qualification according to the current Directive of the Dean.								

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-08-11, time 15:40.