Recomended pass through the study plan

Name of the pass: Branch Computer Graphics - Recommended course structure

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Pass through the study plan: Open Informatics - Computer Graphics

Branch of study guranteed by the department: Welcome page

Guarantor of the study branch:

Program of study: Open Informatics Type of study: Follow-up master full-time

Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of semester: 1

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Р
BEEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Ivana Nová, Josef ernohous, Radek Havlí ek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z	Р
BE4M39APG	Algorithms of Computer Graphics Ji í Žára, Ji í Bittner Ji í Bittner Ji í Žára (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M39MMA	Multimedia and Computer Animation	Z,ZK	6	2P+2L	Z	PO
2018_MOIEVOL	Elective subjects	Min. cours.	Min/Max 0/999			V

Number of semester: 2

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Р
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Р
BE4M39DPG	Data Structures for Computer Graphics Vlastimil Havran Vlastimil Havran (Gar.)	Z,ZK	6	2P+2S	Z	РО
BE4M33GVG	Geometry of Computer Vision and Graphics Torsten Sattler, Viktor Korotynskiy, Tomáš Pajdla Tomáš Pajdla Tomáš Pajdla (Gar.)	Z,ZK	6	2P+2C	L	РО
BE4M39VIZ	Visualization Ladislav molík Ladislav molík Ladislav molík (Gar.)	Z,ZK	6	2P+2C	L	РО

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	KZ	6		Z,L	Р
BE4M39VG	Computational Geometry Petr Felkel Petr Felkel (Gar.)	Z,ZK	6	2P+2S	Z	РО

2018 MOIEVOL	Florities subjects	Min. cours.	Min/Max		V]
2018_MOIEVOL	Elective subjects	0	0/999		V	

Number of semester: 4

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р
2018_MOIEVOL	Floribus subjects	Min. cours.	Min/Max			V
	Elective subjects	0 0/999		V		

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
2018_MOIEVOL		Min. cours.	Min/Max		٠,,	
	Elective subjects	0	0/999			v

List of courses of this pass:

Code	Name of the course	Completion	Credits
BDIP25	Diploma Thesis	Z	25
•	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or l by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh		
BE4M01TAL	Theory of Algorithms	Z,ZK	6
of algorithms. Fur	theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problem ther it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of the algorithms are studied and the classes RP and ZZP introduced.	•	
BE4M33GVG	Geometry of Computer Vision and Graphics	Z,ZK	6
	damentals of image and space geometry including Euclidean, affine and projective geometry, the model of a perspective camera, in	nage transformatio	ns induced
by camera motio	n, and image normalization for object recognition. The theory will be demonstrated on practical task of creating mosaics from images	, measuring the ge	eometry of
objects by a cam	era, and reconstructing geometrical properties of objects from their projections. We will build on linear algebra and optimization and I subjects such as computational geometry, computer vision, computer graphics, digital image processing and recognition of objects	•	n for other
BE4M33PAL	Advanced Algorithms	Z,ZK	6
Basic	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science -	pattern matching.	!
BE4M35KO	Combinatorial Optimization	Z.ZK	6
The goal is to show	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term of	perations research	n). Following
the courses on li	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmir	ng, heuristics, appr	oximation
algorithms and s	tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl scheduling in production lines, message routing, scheduling in parallel computers.	anning of human r	esources,
BE4M39APG	Algorithms of Computer Graphics	Z,ZK	6
	vill get acquainted with basic problems and their solutions in computer graphics. The main topic of the course are graphics primitives rendering, color models, image representations, and basic photorealistic rendering algorithms.	in 2D and 3D for m	odeling and
BE4M39DPG	Data Structures for Computer Graphics	Z,ZK	6
This course provide	s you with the fundamentals of data structures commonly used in computer graphics. In contrast to standard binary search trees used in	one dimension, th	e presented
•	nultidimensional data used to describe 3D scenes. In addition to the theory, the course emphasizes individual and team projects, where t f multidimensional data are demonstrated on practical examples. The students will gain practical experience through their own individ	•	advantages
BE4M39MMA	Multimedia and Computer Animation	Z,ZK	6
	ı sed on methods often applied in the area of computer animation. Studens will get an overview of algorithms and methods solving typ	ical problems of 31	D animation
	tics, animation of human body, dynamics, etc.). Part of the course is devoted to principles used during creative work with sound. The information about methods and technologies used in movie production (MOCAP, stereoscopy, visual effects).	•	
BE4M39VG	Computational Geometry	Z,ZK	6
The goal of comput	ational geometry is analysis and design of efficient algorithms for determining properties and relations of geometric entities. The lecture	e focuses on geom	etric search,
point location, conv	ex hull construction for sets of points in d-dimensional space, searching nearest neighbor points, computing intersection of polygonal area	as, geometry of par	allelograms.
New di	rections in algorithmic design. Computational geometry is applied not only in geometric applications, but also in common database so	earching problems.	
BE4M39VIZ	Visualization	Z,ZK	6
	will get the knowledge of theoretical background for visualization and the application of visualization in real-world examples. The vis	1 '	are aimed
at exploiting bot	h the full power of computer technologies and the characteristics (and limits) of human perception. Well-chosen visualization method	ls can help to revea	al hidden

dependencies in the data that are not evident at the first glance. This in turn enables a more precise analysis of the data or provides a deeper insight into the core of the particular problem represented by the data. BE4MSVP K7 Software or Research Project 6 Independent work on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching diploma thesis and the project advisor is the diploma thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and not underestimating its timely selection. The topic of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defined output, such as a technical report or a computer program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one subject of this type. - An exception may be granted by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different topic and is led by another supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course, then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk.cvut.cz/cs/study/predmetprojekt. **BEEZM** Safety in Electrical Engineering for a master's degree Ζ

The course provides for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical hazard of given branch of study.

Students receive indispensable qualification according to the current Directive of the Dean.

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2025-07-19, time 09:08.