Study plan

Name of study plan: Erasmus Mundus Master Course - SpaceMaster II

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time Required credits: 120 Elective courses credits: 0 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 120 The role of the block: P

Code of the group: 2016_SPACEMASTER_2_P Name of the group: Compulsory subjects of the programme Requirement credits in the group: In this group you have to gain 120 credits Requirement courses in the group: In this group you have to complete 13 courses Credits in the group: 120 Note on the group:

Note on the gro	Jup.					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSP	CanSat-Projekt	Z,ZK	9	2P+2S	Z	Р
BE3M35CSA	Control Systems for Aircraft and Spacecraft Martin Hrom ik Martin Hrom ik Martin Hrom ik (Gar.)	Z,ZK	7	2P+2L	Z	Ρ
BE3M35DIP	Diploma Thesis Martin Hlinovský	Z	30	22S	L	Р
BE3M35ELS	Electronics in Space	Z,ZK	8	2P+2S	L	Р
BE3M35IDP	Individuální projekt Martin Hlinovský Martin Hlinovský Martin Hlinovský (Gar.)	Z	8	0P+6S	Z	Ρ
BE3M35ISP	Introduction to Space Physics	Z,ZK	8	2P+2S	Z	Р
BE3M35ORO	Optic- and Radar-based Observations	Z,ZK	8	2P+2S	L	Р
BE3M35ORC	Optimal and robust control design Zden k Hurák Zden k Hurák Zden k Hurák (Gar.)	Z,ZK	8	2P+2C	L	Ρ
BE3M35SDY	Space Dynamics	Z,ZK	5	2P+2S	Z	Р
BE3M35SPP	Space Plasma Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35SSM	Space systems, modeling and identification Petr Hušek Petr Hušek	Z,ZK	7	4P+2C	Z	Ρ
BE3M35SSD	Spacecraft System Design	Z,ZK	8	2P+2S	Z	Р
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	Р

Characteristics of the courses of this group of Study Plan: Code=2016_SPACEMASTER_2_P Name=Compulsory subjects of the programme

BE3M35CSP	CanSat-Projekt	Z,ZK	9
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7
System Approach. Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Linear Systems Stability			
Uncertainty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of Stochastic Processes.			
BE3M35DIP	Diploma Thesis	Z	30
Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will			
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.			
BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35IDP	Individuální projekt	Z	8
Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or			
branch departments. The project will be defended within the framework of a subject.			

BE3M35ISP	Introduction to Space Physics	Z,ZK	8		
BE3M35ORO	Optic- and Radar-based Observations	Z,ZK	8		
BE3M35ORC	Optimal and robust control design	Z,ZK	8		
This advanced course of	This advanced course on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computational design skills. Unifying idea				
	of the course is that of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranteed. Minimizing H2 norm leads				
	to the celebrated LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness against uncertainties in the model.				
	Mu-synthesis as an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tool for robust control design.				
Standing a little bit aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the course, introduction to the topic					
of semidefinite programming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational tool for solving all the previously					
introduced tasks in optimal and robust control.					
BE3M35SDY	Space Dynamics	Z,ZK	5		
BE3M35SPP	Space Plasma Physics	Z,ZK	7		
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7		
BE3M35SSD	Spacecraft System Design	Z,ZK	8		
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7		

List of courses of this pass:

Code	Name of the course	Completion	Credits
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7
System Approach.	Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Lii	near Systems. Syst	em Stability,
Uncertai	nty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of St	tochastic Processes	S.
BE3M35CSP	CanSat-Projekt	Z,ZK	9
BE3M35DIP	Diploma Thesis	Z	30
Independent final of	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or	her branch of study	, which will
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compret	nensive final examin	nation.
BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35IDP	Individuální projekt	Z	8
Independent work	in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be spec branch departments. The project will be defended within the framework of a subject.	ified by branch dep	artment or
BE3M35ISP	Introduction to Space Physics	Z,ZK	8
BE3M35ORC	Optimal and robust control design	Z,ZK	8
of the course is that to the celebrated Mu-synthesis as	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarant LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull	eed. Minimizing H2 st uncertainties in th tool for robust contr	norm leads ne model. rol design.
•	aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the		
or semidennite prog	ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational t introduced tasks in optimal and robust control.	loor for solving all th	e previously
BE3M35ORO	Optic- and Radar-based Observations	Z,ZK	8
BE3M35SDY	Space Dynamics	Z,ZK	5
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7
BE3M35SPP	Space Plasma Physics	Z,ZK	7
BE3M35SSD	Spacecraft System Design	Z,ZK	8
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2024-05-21, time 01:14.