Name of study plan: Open Informatics - Artificial Intelligence and Computer Science 2018

Faculty/Institute/Others: Faculty of Electrical Engineering
Department:
Branch of study guaranteed by the department: Welcome page
Garantor of the study branch:
Program of study: Open Informatics
Type of study: Bachelor full-time
Required credits: 152
Elective courses credits: 28
Sum of credits in the plan: 180
Note on the plan:
Name of the block: Compulsory courses in the program
Minimal number of credits of the block: 122
The role of the block: P
Code of the group: 2018_BOIBAP
Name of the group: Bachelor Project
Requirement credits in the group: In this group you have to gain 20 credits
Requirement courses in the group: In this group you have to complete 1 course
Credits in the group: 20
Note on the group:

Code	Name of the course /Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BBAP20	Bachelor thesis Roman Čmejla Roman Čmejla (Gar.)	Z	20	$12 S$	L,Z	P

Characteristics of the courses of this group of Study Plan: Code=2018_BOIBAP Name=Bachelor Project

BBAP20	Bachelor thesis	Z	20

Code of the group: 2018_BOIBBE
Name of the group: Safety of the bachelor's studies
Requirement credits in the group:
Requirement courses in the group: In this group you have to complete at least 2 courses
Credits in the group: 0
Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEZB	Safety in Electrical Engineering for a bachelor's degree Ivana Nová, Radek Havlíček, Vladimír Kúla Radek Havliček Vladimír Kủla (Gar.)	Z	0	2BP+2BC	Z,L	P
BEZZ	Basic health and occupational safety regulations Ivana Nová, Radek Havliček, Vladimír Küla Radek Havliček Vladimír Kủla (Gar.)	Z	0	2BP+2BC	Z	P

BEZB	,		
The purpose of the safety course is to give the students basic knowledge of electrical equipment and installation as to avoid danger arising from operation of it. This introductory course contains fundamentals of Safety Electrical Engineering. In this way the students receive qualification of instructed person that enables them to work on electrical equipment.			
BEZZ	Basic health and occupational safety regulations		
The guidelines were worked out based on The Training Scheme for Health and Occupational Safety designed for employees and students of the Czech Technical University in Prague, which was provided by the Rector's Office of the CTU. Safety is considered one of the basic duties of all employees and students. The knowledge of Health and Occupational Safety regulations forms an integral and permanent part of qualification requirements. This program is obligatory.			

Code of the group: 2018_BOIP
Name of the group: Compulsory subjects of the programme
Requirement credits in the group: In this group you have to gain 102 credits
Requirement courses in the group: In this group you have to complete 17 courses
Credits in the group: 102
Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B33ALG	Algorithms Marko Genyk-Berezovskyj, Daniel Průša Marko Genyk-Berezovskyj Marko Genyk-Berezovskyj (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	Z	P
B0B35APO	Computer Architectures Pavel Píša, Richard Šusta, Petr Štěpán Pavel Píša Pavel Píša (Gar.)	Z,ZK	5	2P+2L	L	P
B0B36DBS	Database Systems Martin Řimnáč Martin Řimnáć Martin Řimnáč (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}+4 \mathrm{D}$	L	P
B4B01DMA	Discrete Mathematics Petr Habala Petr Habala Petr Habala (Gar.)	Z,ZK	5	$2 \mathrm{P}+2 \mathrm{~S}$	Z	P
B0B01LAG	Linear Algebra Jirí Velebil, Natalie Žukovec, Daniel Gromada, Josef Dvořăk, Matěj Dostál Jirí Velebil Jiǐi Velebil (Gar.)	Z,ZK	8	4P+2S	Z	P
B0B01LGR	Logic anad Graphs Natalie Żukovec, Matěj Dostál, Alena Gollová Alena Gollová Marie Demlová (Gar.)	Z,ZK	5	$3 \mathrm{P}+2 \mathrm{~S}$	Z,L	P
B0B01MA1	Mathematical Analysis 1 Josef Dvořăk, Martin Kł̌epela, Josef Tkadlec, Veronika Sobotiková Josef Tkadlec Josef Tkadlec (Gar.)	Z,ZK	7	4P+2S	Z,L	P
B0B01MA2	Mathematical Analysis 2 Karel Pospísil, Miroslav Korbelář, Petr Hájek, Martin Bohata, Jaroslav Tišer, Paola Vivi, Hana Turčinová Petr Hájek Jaroslav Tišer (Gar.)	Z,ZK	7	$4 \mathrm{P}+2 \mathrm{~S}$	L,Z	P
B4B35OSY	Operating Systems Petr Štépán, Michal Sojka Michal Sojka Michal Sojka (Gar.)	Z,ZK	4	$2 \mathrm{P}+2 \mathrm{C}$	Z	P
B0B33OPT	Optimization Tomáś Werner, Petr Olšák, Mirko Navara, Tomáś Kroupa Tomáš Werner Tomáš Werner (Gar.)	Z,ZK	7	$4 \mathrm{P}+2 \mathrm{C}$	Z,L	P
B4B36PDV	Parallel and Distributed Computing Jakub Mareček, Michal Jakob, Daria Mikhaylovskaya Michal Jakob Michal Jakob (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	L	P
B4B38PSIA	Computer Networks Jiirí Novák, Jan Holub Jirír Novák Jirí Novák (Gar.)	Z,ZK	5	2P+2L	L	P
B0B01PST	Probability and Statistics Miroslav Korbelář, Veronika Sobotiková, Kateriina Helisová, Matvei Slavenko Kateřina Helisová Petr Hájek (Gar.)	Z,ZK	7	4P+2S	Z	P
B0B36PRP	Procedural Programming Jan Faigl Jan Faigl Jan Faigl (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	Z	P
B0B36PJV	Programming in Java Jiiri Vokrïnek, Martin Mudroch, Ladislav Serédi Jiríl Vokřinek Jirí Vokrínek (Gar.)	Z,ZK	6	$2 \mathrm{P}+3 \mathrm{C}+7 \mathrm{D}$	L	P
B4B33RPH	Solving Problems and other Games Tomáš Svoboda, Petr Pošík Petr Pošik Tomáš Svoboda (Gar.)	KZ	6	$2 \mathrm{P}+3 \mathrm{C}$	Z	P
B4BPROJ6	Unassisted project Tomáś Svoboda, Petr Pošik, Jiríl Šebek, Jaroslav Sloup, Ivan Jelínek, Katarína Żmoliková Petr Pošík	Z	6	0+2	Z,L	P

Characteristics of the courses of this group of Study Plan: Code=2018_BOIP Name=Compulsory subjects of the programme

B4B33ALG In the course, the algorithms development is constructed with minimum dependency to programming language; nevertheless the lectures and seminars are based on Java. Basic data types a data structures, basic algorithms, recursive functions, abstract data types, stack, queues, trees, searching, sorting, special application algorithms, Dynamic programming. Students are able to design and construct non-trivial algorithms and to evaluate their effectivity.				
B0B35APO	Computer Architectures	Z,ZK	Z,ZK	5
B0B36DBS	Database Systems	Z,ZK	6	

The course is designed as a basic database course mainly aimed at the student ability to design a relational data model and to use the SQL language for data definition as well as for data querying and to choose the appropriate degree of transaction isolation. Students will also get acquainted with the most commonly used indexing techniques, database system architecture and their management. They will verify their knowledge during the elaboration of a continuously submitted seminar task.
B4B01DMA \quad Discrete Mathematics
Z,ZK
5
In this course students meet some important topics from the field of discrete mathematics. Namely, they will explore divisibility and calculations modulo n , diophantine equations, binary relations, mappings, cardinality of sets, induction, and recurrence equations. The second aim of this course is to teach students the language of mathematics, both passively and actively, and introduce them to mathematics as science.
B0B01LAG \quad Linear Algebra
Z,ZK 8
The course covers the initial parts of linear algebra. Firstly, the basic notions of a linear space and linear mappings are covered (linear dependence and independence, basis, coordinates, etc). The calculus of matrices (determinants, inverse matrices, matrices of a linear map, eigenvalues and eigenvectors, diagonalisation, etc) is covered next. The applications include solving systems of linear equations, the geometry of a 3D space (including the scalar product and the vector product) and SVD. and of the relationship between a formula and its model is stressed. Further, basic notions from graph theory are introduced.
B0B01MA1 \quad Mathematical Analysis 1
Z,ZK
7
The aim of the course is to introduce students to basics of differential and integral calculus of functions of one variable.
B0B01MA2 \quad Mathematical Analysis 2

Z,ZK	7

The subject covers an introduction to the differential and integral calculus in several variables and basic relations between curve and surface integrals. Other part contains function series and power series with application to Taylor and Fourier series.

B4B35OSY \quad Operating Systems
Z,ZK $\quad 4$

Lecture introduces operation system's basic concepts and principles as processes, threads, communication and synchronization, virtual memory, drivers, file systems, basic security aspects. These topics are theoretically described and demonstrated on Linux and Windows OS with multi-core systems. Practical exercises from OS in C programming language will be solved on labs. Students will work with Linux OS and micro-kernel NOVA.

The course provides an introduction to mathematical optimization, specifically to optimization in real vector spaces of finite dimension. The theory is illustrated with a number of examples. You will refresh and extend many topics that you know from linear algebra and calculus courses.

B4B36PDV	Parallel and Distributed Computing	Z,ZK	6
B4B38PSIA	Computer Networks	5	
B0B01PST	Probability and Statistics	Procedural Programming	Z,ZK
B0B36PRP	Z,ZK	7	

The course accompanies basic programming emphasizing the data representation in computer memory. Furthermore, the concepts of linked data structures and processing user inputs are developed. Students master the practical implementation of simple individual tasks. The course emphasizes acquiring programming habits for creating readable and reusable programs. At the same time, the effort is to build students an overview of the program operation, data model, memory access, and management. Therefore, the C programming language is used that provides a direct link between the program data structures and their representation in the computer memory. Students will get acquainted not only with program compilation and linking but also with debugging and profiling. Labs aim to acquire practical skills of implementing simple individual tasks, emphasizing functionality and accuracy of implementation. Student independence is developed by a set of homework with the possibility of optional and bonus assignments. The final task is an integration of a larger program using existing implementations. Evaluation of coding style motivated by writing legible, understandable, and maintainable codes is also a part of the selected tasks.

B0B36PJV \quad Programming in Java

$Z, Z K$	6

The course builds on the basics of algorithms and programming from the first semester and introduces students to the Java environment. The course also focus on the object concept of the Java language. The topics of the course includes exceptions, event handling, and building a graphical interface. Basic library methods, working with files and using generic types will be introduced. An important topic is models of multithreaded applications and their implementation. Practical exercises of practical skills and knowledge of Java is tested in the form of solving partial tasks and semester work, which will be submitted continuously through the source code version control system. The semester work scoring consists of points for the correctness and efficiency of the code, as well as points that take into account the quality of the source codes, their readability and reusability.
B4B33RPH \quad Solving Problems and other Games

KZ	6

The main motivation is to let students to deal with real-world problems properly. When working on real problems the student shall learn how to decompose the big problem, how to define interfaces, how to test and validate individual steps and so on. Many problems will actually be beyond the first-year-student skills. And many problem will not be solved in the optimal way. The unsolved parts should motivate the students to study difficult theoretical subjects. They should generate the important questions. Ideally, at the end of the subject, the student should be eager to study deeper about informatics. The course also explains the basis of the object oriented design, software testing, ways for writing readable and robust codes.
B4BPROJ6
Unassisted project
Z
6

Code of the group: 2015_BZAJ

Name of the group: Exam from the english language
Requirement credits in the group:

Requirement courses in the group: In this group you have to complete 2 courses Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0B04B1K	English language B1 - classified assessment Markéta Havlíckova, Pav1a Péterová, Erik Peter Stadnik, Michael Ynsua, Dana Saláková, Petra Jennings Petra Jennings Petra Jennings (Gar.)	KZ	0	0 C	Z,L	P
B0B04B2Z	English language B2 - exam Michael Ynsua,, Dana Saláková, Petra Jennings Petra Jennings Petra Jennings (Gar.)	Z,ZK	0	$0 C$	Z,L	P

Characteristics of the courses of this group of Study Plan: Code=2015_BZAJ Name=Exam from the english language

B0B04B verifying o		KZ	
	English language B2-exam		
I) The B2 English Exam is a compulsory subject for all Faculty of Electrical Engineering students at the Czech Technical University. According to the Study and Examination Rules and Regulations for Students at CTU (Part III, Article 4), a compulsory subject is one "whose completion is a necessary condition in order to successfully complete the study programme." In addition, this requires the "passing of an examination evaluated on the scale A, B, C, D, or E..." (SERR Part III, Article 6). II) According to the Common European Framework of Reference for Languages (CEFR), an international standard for describing language ability, the definition of an English language learner who has achieved the B2 (Upper-Intermediate) level is one who "...can understand the main ideas of complex text on both concrete and abstract topics, including technical discussions in his/her field of specialisation. Can interact with a degree of fluency and spontaneity that makes regular interaction with native speakers quite possible without strain for either party. Can produce clear, detailed text on a wide range of subjects and explain a viewpoint on a topical issue giving the advantages and disadvantages of various options." III) Students who have successfully passed an approved international exam within the past five years may present their certificate to the Department of Languages, Faculty of Electrical Engineering.Upon approval, students are then exempt from both the Written Test and the Oral Part. For a list of approved international exams go the department website: http://jazyky.fel.cvut.cz/			

Name of the block: Povinné předměty zaměření

Minimal number of credits of the block: 30

The role of the block: PZ

Code of the group: 2018_BOIPS1

Name of the group: Compulsory subjects of the branch

Requirement credits in the group: In this group you have to gain 30 credits
Requirement courses in the group: In this group you have to complete 5 courses
Credits in the group: 30
Note on the group: Specializace - základy umělé inteligence a počítačových věd

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B36FUP	Functional Programming Rostislav Horčík, Niklas Maximilian Heim Michal Pěchouček Michal Pěchouček (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	L	PZ
B4B01JAG	Languages, Automats and Gramatics Marie Demlová, Jiríl Demel Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{~S}$	Z	PZ
B4B01NUM	Numerical Analysis Mirko Navara, Aleš Nèmeček Mirko Navara Mirko Navara (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	Z	PZ
B4B33RPZ	Recognition and machine learning Ondřej Drbohlav, Jiríl Matas, Jan Šochman Ondřej Drbohlav Jiǐí Matas (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	Z	PZ
B4B36ZUI	Introduction to Artificial Intelligence Viliam Lisý, Branislav Bošansky Branislav Bošanský Michal Pěchouček (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	L	PZ

Characteristics of the courses of this group of Study Plan: Code=2018_BOIPS1 Name=Compulsory subjects of the branch

B4B36FUP	Functional Programming	Z,ZK	6

This course introduces students into the techniques of functional programming, the advantages and disadvantages of this programming paradigm, and its use in practice. This approach is declarative in the sense that the programmer symbolically describes the problem to be solved, rather than specifying the exact sequence of operations required to solve it. It allows focusing on the essence of the solved problem and implementing even more complex algorithms compactly. Functional programming has notable advantages for parallelization and automated verification of algorithms, and the most useful functional programming concepts are increasingly often introduced to standard programming languages. Because of the focus of functional programming on symbols, rather than numbers, functional programming has been heavily used in in artificial intelligence fields, such as agent systems or symbolic machine learning. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

B4B01JAG	Languages, Automats and Gramatics	Z,ZK	6

Basic notions of the theory of finite automata and grammars: deterministic and non deterministic finite automata, languages accepted by finite automata, regular expressions. Grammars and languages generated by grammars with emphasis to context free grammars. A very brief introduction of Turing machines.

The course introduces to basic numerical methods of interpolation and approximation of functions, numerical differentiation and integration, solution of transcendent equations and systems of linear equations. Emphasis is put on estimation of errors, practical skills with the methods and demonstration of their properties using Maple and computer graphics.

| B4B33RPZ | Recognition and machine learning | Z,ZK | 6 |
| :--- | :--- | :---: | :---: | The basic formulations of the statistical decision problem are presented. The necessary knowledge about the (statistical) relationship between observations and classes of objects is acquired by learning on the raining set. The course covers both well-established and advanced classifier learning methods, as Perceptron, AdaBoost, Support Vector Machines, and Neural Nets. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

The aim of the course is to cover the basics of symbolic artificial intelligence. We will focus on algorithms of informed and uninformed state space search, problem representation and solving, representation of knowledge using formal logic, methods of automated reasoning, and an introduction to Markov decision making, and to two-player games. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

Name of the block: Compulsory elective courses
Minimal number of credits of the block: 0
The role of the block: PV
Code of the group: 2018_BOIAPP
Name of the group: Subjects in english
Requirement credits in the group:
Requirement courses in the group: In this group you have to complete at least 1 course
Credits in the group: 0
Note on the ~Studenti programu Otevřená informatika musí v bakalárském studiu projít alespoň jedním anglicky přednášeným group: povinným předmětem programu či oboru. Bližší podmínky jsou uvedeny na stránce https://oi.fel.cvut.cz/ccs/bakalarsky-program (sekce Jazyková příprava). Niže je uveden seznam doporučených předmětů, kterými můžete tuto povinnost splnit. Pokud je česká varianta součástí vašeho povinného studijního
plánu, pochopitelně vam anglická varianta nahradí tuto českou. Kromě uvedeného seznamu Ize povinnost splnit zápisem anglicky přednášeného předmětu na zahraniční stáži (Erasmus, apod.). V obou výše uvedených případech bude povinnost v KOSu splněna automaticky. Poslední možností je splnit tuto povinnost na žádost jinak (předmět mimo seznam, bakalářská práce vedená zahraničním vedoucím, apod.).II

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4B33SEA	Subject in english - abroad	Z,ZK	0		Z,L	PV
BE5B32PKS	Computer and Communication Networks Leoš Boháč, Tomáš Vaněk, Pavel Bezpalec Zbyněk Kocur Leoš Boháč (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	Z	PV
BE5B35APO	Computer Architectures Pavel Píša, Richard Šusta Pavel Píša Pavel Píša (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{~L}$	L	PV
BE4B38PSIA	Computer Networks Jiirí Novák, Jan Holub Jirí Novák Jirí Novák (Gar.)	Z,ZK	5	2P+2L	L	PV
BE4B36FUP	Functional Programming Rostislav Horčik, Niklas Maximilian Heim Rostislav Horčík Michal Pěchouček (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	L	PV
BE4B36ZUI	Introduction to Artificial Intelligence Viliam Lisý, Branislav Bošanský Branislav Bošanský Branislav Bošanský (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	L	PV
BE5B35LSP	Logic Systems and Processors Richard SUusta, Martin Hlinovsky Martin Hlinovský Richard Šusta (Gar.)	Z,ZK	6	3P+2L	Z	PV
BE5B33RPZ	Pattern Recognition and Machine Learning Ondřej Drbohlav, Jiirí Matas, Jan Šochman Jiriŕ Matas Jiří Matas (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}$	Z	PV
BE4B39VGO	Creating graphic content Ladislav Cmolik Ladislav Čmolík Ladislav Čmolik (Gar.)	Z,ZK	6	$2 \mathrm{P}+2 \mathrm{C}+8 \mathrm{D}$	Z	PV

Characteristics of the courses of this group of Study Plan: Code=2018_BOIAPP Name=Subjects in english

The aim of the course is to familiarize students with current trends in the switched local networks and the key functions of routing protocols in IP networks. The course is aimed rather primarily practically then theoretically.
BE5B35APO \quad Computer Architectures
Z,ZK
6
Subject provides overview of basic building blocks of computer systems. Explanation starts from hardware side where it extends knowledge presented in the previous lectures of Structures of computer systems. Topics cover building blocks description, CPU structure, multiple processors interconnections, input/output subsystem and basic overview of network and buses topologies. Emphasis is placed on clarification of interconnection of hardware components with software support, mainly lower levels of operating systems, device drivers and virtualization techniques. General principles are more elaborated during presentation of examples of multiple standard CPU architectures. Exercises are more focused on the software view to the contrary. Students are lead from basic programming on CPU level to the interaction with raw hardware.
BE4B38PSIA \quad Computer Networks

Z,ZK

5
Subject is devoted to principles and technologies of Computer Networks. Physical layer media, analog and digital modulations, network topologies, MAC methods, ARQ algorithms, data communication models, coding and cryptography basics are introduced. Widely used LAN technologies are then presented together with their features. Internet protocols are explained and internetworking approaches are presented.
BE4B36FUP \quad Functional Programming
Z,ZK
6

This course introduces students into the techniques of functional programming, the advantages and disadvantages of this programming paradigm, and its use in practice. This approach is declarative in the sense that the programmer symbolically describes the problem to be solved, rather than specifying the exact sequence of operations required to solve it. It allows focusing on the essence of the solved problem and implementing even more complex algorithms compactly. Functional programming has notable advantages for parallelization and automated verification of algorithms, and the most useful functional programming concepts are increasingly often introduced to standard programming languages. Because of the focus of functional programming on symbols, rather than numbers, functional programming has been heavily used in in artificial intelligence fields, such as agent systems or symbolic machine learning. This course is also part of the inter-university programme prg.ai Minor. It pools the best of Al education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.
BE4B36ZUI \quad Introduction to Artificial Intelligence
Z,ZK
6
The aim of the course is to cover the basics of symbolic artificial intelligence. We will focus on algorithms of informed and uninformed state space search, problem representation and solving, representation of knowledge using formal logic, methods of automated reasoning, and an introduction to Markov decision making, and to two-player games. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.
BE5B35LSP \quad Logic Systems and Processors
Z,ZK
6

The course introduces the basic hardware structures of computing resources, their design, and architecture. It provides an overview of the possibilities of performing data operations at the hardware level and the design of embedded processor systems with peripherals on modern FPGA programmable logic circuits, which are increasingly widely used today. Students will learn their description in VHDL, from logic to more complex sequential circuits to practical finite state machine (FSM) designs. They will also master the correct design procedure using circuit simulation. Practical problems are solved using development boards used at hundreds of leading universities around the world. The course ends with RISC-V processor structure, cache, and pipeline processing.
BE5B33RPZ \quad Pattern Recognition and Machine Learning
Z,ZK $\quad 6$
The basic formulations of the statistical decision problem are presented. The necessary knowledge about the (statistical) relationship between observations and classes of objects is acquired by learning on the raining set. The course covers both well-established and advanced classifier learning methods, as Perceptron, AdaBoost, Support Vector Machines, and Neural Nets. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.
BE4B39VGO \quad Creating graphic content
Z,ZK
6
The aim of this course is to provide theory behind geometric modeling and modeling of materials, give students an overview of methods used in the process of creating 2D and 3D graphics and how to apply those methods in praxis. At the seminars, students will learn how to design and create three-dimensional scene, create and apply textures imitating materials (e.g., wall finishes, wood, sky) and geometrical details, and position and set-up lights in the scene.

Name of the block: Elective courses
Minimal number of credits of the block: 0
The role of the block: V

Code of the group: 2018_BOIH
Name of the group: Humanities subjects
Requirement credits in the group:
Requirement courses in the group:
Credits in the group: 0
Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0B16ET1	Ethic 1 Vladimír Slámečka Vladimír Slámečka Vladimír Slámečka (Gar.)	KZ	4	$2 \mathrm{P}+2 \mathrm{C}$	Z	V
B0B16FIL	Philosophy Peter Zamarovsky Peter Zamarovský Peter Zamarovský (Gar.)	ZK	2	2P+0S	Z,L	V
B0B16FI1	Philosophy 1 Peter Zamarovsky Peter Zamarovský Peter Zamarovský (Gar.)	KZ	4	$2 \mathrm{P}+2 \mathrm{~S}$	Z	v
B0B16HTE	History of technology and economic Marcela Efmertová, Jan Mikeš Marcela Efmertová Marcela Efmertová (Gar.)	ZK	2	2P+0S	Z,L	V
B0B16HT1	History of science and technology 1 Marcela Efmertová, Jan Mikeš Marcela Efmertová Marcela Efmertová (Gar.)	KZ	4	$2 \mathrm{P}+2 \mathrm{~S}$	Z	V
B0B16HI1	History 1 Milena Josefovičová Milena Josefovičová Milena Josefovičová (Gar.)	KZ	4	$2 \mathrm{P}+2 \mathrm{~S}$	Z	V
B0B16MPS	Psychology Jan Fiala Jan Fiala Jan Fiala (Gar.)	Z,ZK	4	$2 \mathrm{P}+2 \mathrm{~S}$	Z,L	V
B0B16MPL	Psychology for managers Jan Fiala Jan Fiala Jan Fiala (Gar.)	ZK	2	$2 \mathrm{P}+0 \mathrm{~S}$	Z,L	V

Characteristics of the courses of this group of Study Plan: Code=2018_BOIH Name=Humanities subjects

B0B16ET1	Ethic 1	KZ	4
Aim of this subject is to provide the students an orientation not only in general problems of ethics but above all to offer instructions for solving various situations of human life. Essential parts of the subject are discussions in which students can react to lectures but also to actual questions coming with news and look for the communal answers.			
B0B16FIL	Philosophy	ZK	2
We deal with the most important persons, schools and ideas of ancient philosophy. We are concerned especially on transdisciplinary nature of philosophy and connection of old philosophical thoughts with recent problems of science, technology, economics and politics.			
B0B16FI1	Philosophy 1	KZ	4
We deal with the most important persons, schools and ideas of ancient philosophy. We are concerned especially on transdisciplinary nature of philosophy and connection of old philosophical thoughts with recent problems of science, technology, economics and politics.			
B0B16HTE	History of technology and economic	ZK	2
B0B16HT1	History of science and technology 1	KZ	4
B0B16HI1	History 1	KZ	4
B0B16MPS	Psychology	Z,ZK	4
B0B16MPL	Psychology for managers	ZK	2

Code of the group: 2015_BJKA
Name of the group: English language courses
Requirement credits in the group:
Requirement courses in the group:
Credits in the group: 0
Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0B04A21	English Language A2-1 Dana Saláková	Z		2 s	Z	V
B0B04A22	English Language A2-2 Dana Saláková	Z	0	2 s	L	V
B0B04B11	English Language B1-1 Petra Jennings Petra Jennings (Gar.)	Z	0	2 C	Z	V
B0B04B12	English Language B1-2 Petra Jennings Petra Jennings (Gar.)	Z	0	2 C	L	V
B0B04B21	English Language B2-1 Petra Jennings Petra Jennings (Gar.)	Z	3	2 C	Z	V

Characteristics of the courses of this group of Study Plan: Code=2015_BJKA Name=English language courses

Code of the group: BTV

Name of the group: Physical education
Requirement credits in the group:
Requirement courses in the group:
Credits in the group: 0

Note on the group:

Code	Name of the course /Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
TVV	Physical education	Z	0	$0+2$	Z, L	V
A003TV	Physical Education	Z	2	$0+2$	$\mathrm{~L}, \mathrm{Z}$	V
TV-V1	Physical education	Z	1	$0+2$	Z, L	V
TVV0	Physical education	Z	0	$0+2$	Z, L	V

Characteristics of the courses of this group of Study Plan: Code=BTV Name=Physical education

TVV	Physical education	Z	0
A003TV	Physical Education	Z	2
TV-V1	Physical education	Z	1
TVV0	Physical education	Z	0

Code of the group: BTVK

Name of the group: Physical education courses
Requirement credits in the group:
Requirement courses in the group:
Credits in the group: 0
Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
TVKLV	Physical Education Course	Z	0	$7 d n i ́$	L	V
TVKZV	Physical Education Course	Z	0	$7 d n i ́$	Z	V

Characteristics of the courses of this group of Study Plan: Code=BTVK Name=Physical education courses

TVKLV	Physical Education Course	Z	0
TVKZV	Physical Education Course	Z	0

Code of the group: 2018_BOIVOL

Name of the group: Elective subjects
 Requirement credits in the group:
 Requirement courses in the group:
 Credits in the group: 0
 Note on the group:
 ~Nabídku volitelných předmětů uspořádaných podle kateder najdete na webových stránkách http://www.fel.cvut.cz/cz/education/volitelne-predmety.htm/ll

List of courses of this pass:

Code	Name of the course	Completion	Credits
A003TV	Physical Education	Z	2
B0B01LAG	Linear Algebra	Z,ZK	8

The course covers the initial parts of linear algebra. Firstly, the basic notions of a linear space and linear mappings are covered (linear dependence and independence, basis, coordinates, etc). The calculus of matrices (determinants, inverse matrices, matrices of a linear map, eigenvalues and eigenvectors, diagonalisation, etc) is covered next. The applications include solving systems of linear equations, the geometry of a 3D space (including the scalar product and the vector product) and SVD.

| B0B01LGR Logic anad Graphs | Z,ZK | 5 |
| :---: | :---: | :---: | :---: |

This course covers basics of mathematical logic and graph theory. Syntax and semantics of propositional and predicate logic are introduced. The importance of the notion of consequence and of the relationship between a formula and its model is stressed. Further, basic notions from graph theory are introduced.

This course is designed as a full-year, two semester preparation course for the university's compulsory B2-level English Examination (Anglický jazyk B2-zkouška - B0B04B2Z*). While the course is focused on helping students reach a level required to pass the B2-level English Examination (or improve their English for a higher mark), it also focuses more on the academic and technical vocabulary and grammar expected of students at the university level. *NOTE: This exam is also used for determining an appropriate level of English for Erasmus / International Study.
B0B04B22
English Language B2-2

Z	3

This course is designed as a full-year, two semester preparation course for the university's compulsory B2-level English Examination (Anglicky jazyk B2-zkouška - B0B04B2Z *). While the course is focused on helping students reach a level required to pass the B2-level English Examination (or improve their English for a higher mark), it also focuses more on the academic and technical vocabulary and grammar expected of students at the university level. *NOTE: This exam is also used for determining an appropriate level of English for Erasmus / International Study.

B0B04B2Z

English language B2 - exam

Z,ZK	0

I) The B2 English Exam is a compulsory subject for all Faculty of Electrical Engineering students at the Czech Technical University. According to the Study and Examination Rules and Regulations for Students at CTU (Part III, Article 4), a compulsory subject is one "whose completion is a necessary condition in order to successfully complete the study programme." In addition, this requires the "passing of an examination evaluated on the scale A, B, C, D, or E..." (SERR Part III, Article 6). II) According to the Common European Framework of Reference for Languages (CEFR), an international standard for describing language ability, the definition of an English language learner who has achieved the B2 (Upper-Intermediate) level is one who "...can understand the main ideas of complex text on both concrete and abstract topics, including technical discussions in his/her field of specialisation. Can interact with a degree of fluency and spontaneity that makes regular interaction with native speakers quite possible without strain for either party. Can produce clear, detailed text on a wide range of subjects and explain a viewpoint on a topical issue giving the advantages and disadvantages of various options." III) Students who have successfully passed an approved international exam within the past five years may present their certificate to the Department of Languages, Faculty of Electrical Engineering.Upon approval, students are then exempt from both the Written Test and the Oral Part. For a list of approved international exams go the department website: http://jazyky.fel.cvut.cz/

```
B0B16ET1
Ethic \(1 \quad\) KZ
```

4
Aim of this subject is to provide the students an orientation not only in general problems of ethics but above all to offer instructions for solving various situations of human life. Essential parts of the subject are discussions in which students can react to lectures but also to actual questions coming with news and look for the communal answers.

We deal with the most important persons, schools and ideas of ancient philosophy. We are concerned especially on transdisciplinary nature of philosophy and connection of old philosophical thoughts with recent problems of science, technology, economics and politics.

B0B16H11	History 1	KZ	4
BOB16HT1	History of science and technology 1	KZ	4
B0B16HTE	History of technology and economic	ZK	2
BOB16MPL	Psychology for managers	ZK	2
BOB16MPS	Psychology	Z,ZK	4
BOB33OPT	Optimization	Z,ZK	7

The course provides an introduction to mathematical optimization, specifically to optimization in real vector spaces of finite dimension. The theory is illustrated with a number of examples. You will refresh and extend many topics that you know from linear algebra and calculus courses.

B0B35APO	Computer Architectures	Database Systems	Z,ZK
B0B36DBS	ZK	5	
The course is designed as a basic database course mainly aimed at the student ability to design a relational data model and to use the sol language for data definition as well as for			

The course is designed as a basic database course mainly aimed at the student ability to design a relational data model and to use the SQL language for data definition as well as for data querying and to choose the appropriate degree of transaction isolation. Students will also get acquainted with the most commonly used indexing techniques, database system architecture and their management. They will verify their knowledge during the elaboration of a continuously submitted seminar task.
B0B36PJV
Programming in Java

Z,ZK	6

The course builds on the basics of algorithms and programming from the first semester and introduces students to the Java environment. The course also focus on the object concept of the Java language. The topics of the course includes exceptions, event handling, and building a graphical interface. Basic library methods, working with files and using generic types will be introduced. An important topic is models of multithreaded applications and their implementation. Practical exercises of practical skills and knowledge of Java is tested in the form of solving partial tasks and semester work, which will be submitted continuously through the source code version control system. The semester work scoring consists of points for the correctness and efficiency of the code, as well as points that take into account the quality of the source codes, their readability and reusability.
B0B36PRP \quad Procedural Programming \quad Z,ZK
The course accompanies basic programming emphasizing the data representation in computer memory. Furthermore, the concepts of linked data structures and processing user inputs are developed. Students master the practical implementation of simple individual tasks. The course emphasizes acquiring programming habits for creating readable and reusable programs. At the same time, the effort is to build students an overview of the program operation, data model, memory access, and management. Therefore, the C programming language is used that provides a direct link between the program data structures and their representation in the computer memory. Students will get acquainted not only with program compilation and linking but also with debugging and profiling. Labs aim to acquire practical skills of implementing simple individual tasks, emphasizing functionality and accuracy of implementation.
Student independence is developed by a set of homework with the possibility of optional and bonus assignments. The final task is an integration of a larger program using existing implementations. Evaluation of coding style motivated by writing legible, understandable, and maintainable codes is also a part of the selected tasks.

B4B01DMA
 Discrete Mathematics \quad Z,ZK

In this course students meet some important topics from the field of discrete mathematics. Namely, they will explore divisibility and calculations modulo n , diophantine equations, binary relations, mappings, cardinality of sets, induction, and recurrence equations. The second aim of this course is to teach students the language of mathematics, both passively and actively, and introduce them to mathematics as science.

B4B01JAG

Languages, Automats and Gramatics
Z,ZK 6
Basic notions of the theory of finite automata and grammars: deterministic and non deterministic finite automata, languages accepted by finite automata, regular expressions. Grammars and languages generated by grammars with emphasis to context free grammars. A very brief introduction of Turing machines.

B4B01NUM

Numerical Analysis

Z,ZK	6

The course introduces to basic numerical methods of interpolation and approximation of functions, numerical differentiation and integration, solution of transcendent equations and systems of linear equations. Emphasis is put on estimation of errors, practical skills with the methods and demonstration of their properties using Maple and computer graphics. $\begin{array}{ll}\text { B4B33ALG } & \text { Algorithms }\end{array}$
In the course, the algorithms development is constructed with minimum dependency to programming language; nevertheless the lectures and seminars are based on Java. Basic data types a data structures, basic algorithms, recursive functions, abstract data types, stack, queues, trees, searching, sorting, special application algorithms, Dynamic programming. Students are able to design and construct non-trivial algorithms and to evaluate their effectivity.
B4B33RPH
Solving Problems and other Games

KZ	6

The main motivation is to let students to deal with real-world problems properly. When working on real problems the student shall learn how to decompose the big problem, how to define interfaces, how to test and validate individual steps and so on. Many problems will actually be beyond the first-year-student skills. And many problem will not be solved in the optimal way. The unsolved parts should motivate the students to study difficult theoretical subjects. They should generate the important questions. Ideally, at the end of the subject, the student should be eager to study deeper about informatics. The course also explains the basis of the object oriented design, software testing, ways for writing readable and robust codes.
B4B33RPZ

Recognition and machine learning

Z,ZK
6
The basic formulations of the statistical decision problem are presented. The necessary knowledge about the (statistical) relationship between observations and classes of objects is acquired by learning on the raining set. The course covers both well-established and advanced classifier learning methods, as Perceptron, AdaBoost, Support Vector Machines, and Neural Nets. This course is also part of the inter-university programme prg.ai Minor. It pools the best of Al education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.
B4B35OSY Operating Systems \quad Z,ZK
Lecture introduces operation system's basic concepts and principles as processes, threads, communication and synchronization, virtual memory, drivers, file systems, basic security aspects. These topics are theoretically described and demonstrated on Linux and Windows OS with multi-core systems. Practical exercises from OS in C programming language will be solved on labs. Students will work with Linux OS and micro-kernel NOVA.

B4B36FUP Functional Programming

Z,ZK

6
This course introduces students into the techniques of functional programming, the advantages and disadvantages of this programming paradigm, and its use in practice. This approach is declarative in the sense that the programmer symbolically describes the problem to be solved, rather than specifying the exact sequence of operations required to solve it. It allows focusing on the essence of the solved problem and implementing even more complex algorithms compactly. Functional programming has notable advantages for parallelization and automated verification of algorithms, and the most useful functional programming concepts are increasingly often introduced to standard programming languages. Because of the focus of functional programming on symbols, rather than numbers, functional programming has been heavily used in in artificial intelligence fields, such as agent systems or symbolic machine learning. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

B4B36PDV	Parallel and Distributed Computing	Z,ZK	6
B4B36ZUI	Introduction to Artificial Intelligence	Z,ZK	6

The aim of the course is to cover the basics of symbolic artificial intelligence. We will focus on algorithms of informed and uninformed state space search, problem representation and solving, representation of knowledge using formal logic, methods of automated reasoning, and an introduction to Markov decision making, and to two-player games. This course is
also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

B4B38PSIA	Computer Networks	Z,ZK	5
B4BPROJ6	Unassisted project	Z	6
BBAP20	Bachelor thesis	Z	20
BE4B33SEA	Subject in english - abroad The subject serves for validation of the duty to complete at least one compulsory course of the program in English.	Z,ZK	0
BE4B36FUP	Functional Programming	Z,ZK	6

This course introduces students into the techniques of functional programming, the advantages and disadvantages of this programming paradigm, and its use in practice. This approach is declarative in the sense that the programmer symbolically describes the problem to be solved, rather than specifying the exact sequence of operations required to solve it. It allows focusing on the essence of the solved problem and implementing even more complex algorithms compactly. Functional programming has notable advantages for parallelization and automated verification of algorithms, and the most useful functional programming concepts are increasingly often introduced to standard programming languages. Because of the focus of functional programming on symbols, rather than numbers, functional programming has been heavily used in in artificial intelligence fields, such as agent systems or symbolic machine learning. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

The aim of the course is to cover the basics of symbolic artificial intelligence. We will focus on algorithms of informed and uninformed state space search, problem representation and solving, representation of knowledge using formal logic, methods of automated reasoning, and an introduction to Markov decision making, and to two-player games. This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

Subject is devoted to principles and technologies of Computer Networks. Physical layer media, analog and digital modulations, network topologies, MAC methods, ARQ algorithms, data communication models, coding and cryptography basics are introduced. Widely used LAN technologies are then presented together with their features. Internet protocols are explained and internetworking approaches are presented.

The aim of this course is to provide theory behind geometric modeling and modeling of materials, give students an overview of methods used in the process of creating 2D and 3D
graphics and how to apply those methods in praxis. At the seminars, students will learn how to design and create three-dimensional scene, create and apply textures imitating materials (e.g., wall finishes, wood, sky) and geometrical details, and position and set-up lights in the scene.

BE5B32PKS

> Computer and Communication Networks

Z,ZK	6

The aim of the course is to familiarize students with current trends in the switched local networks and the key functions of routing protocols in IP networks. The course is aimed rather primarily practically then theoretically.

\section*{BE5B33RPZ Pattern Recognition and Machine Learning
 | Z,ZK | 6 |
| :--- | :--- |}

The basic formulations of the statistical decision problem are presented. The necessary knowledge about the (statistical) relationship between observations and classes of objects is acquired by learning on the raining set. The course covers both well-established and advanced classifier learning methods, as Perceptron, AdaBoost, Support Vector Machines, and Neural Nets. This course is also part of the inter-university programme prg.ai Minor. It pools the best of Al education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.

BE5B35APO
 Computer Architectures
 Z,ZK
 6
 Subject provides overview of basic building blocks of computer systems. Explanation starts from hardware side where it extends knowledge presented in the previous lectures of

 Structures of computer systems. Topics cover building blocks description, CPU structure, multiple processors interconnections, input/output subsystem and basic overview of network and buses topologies. Emphasis is placed on clarification of interconnection of hardware components with software support, mainly lower levels of operating systems, device drivers and virtualization techniques. General principles are more elaborated during presentation of examples of multiple standard CPU architectures. Exercises are more focused on the software view to the contrary. Students are lead from basic programming on CPU level to the interaction with raw hardware.BE5B35LSP
Logic Systems and Processors

Z,ZK	6

The course introduces the basic hardware structures of computing resources, their design, and architecture. It provides an overview of the possibilities of performing data operations at the hardware level and the design of embedded processor systems with peripherals on modern FPGA programmable logic circuits, which are increasingly widely used today. Students will learn their description in VHDL, from logic to more complex sequential circuits to practical finite state machine (FSM) designs. They will also master the correct design procedure using circuit simulation. Practical problems are solved using development boards used at hundreds of leading universities around the world. The course ends with RISC-V processor structure, cache, and pipeline processing.
BEZB \quad Safety in Electrical Engineering for a bachelor's degree

Z	0

The purpose of the safety course is to give the students basic knowledge of electrical equipment and installation as to avoid danger arising from operation of it. This introductory course contains fundamentals of Safety Electrical Engineering. In this way the students receive qualification of instructed person that enables them to work on electrical equipment.
BEZZ \quad Basic health and occupational safety regulations \quad Z

The guidelines were worked out based on The Training Scheme for Health and Occupational Safety designed for employees and students of the Czech Technical University in Prague, which was provided by the Rector's Office of the CTU. Safety is considered one of the basic duties of all employees and students. The knowledge of Health and Occupational Safety regulations forms an integral and permanent part of qualification requirements. This program is obligatory.

TV-V1	Physical education	Z	1
TVKLV	Physical Education Course	Z	0
TVKZV	Physical Education Course	Z	0
TVV	Physical education	Z	0
TVV0	Physical education	Z	0

For updated information see http://bilakniha.cvut.cz/en//3.html Generated: day 2024-05-21, time 10:39.

