Study plan

Name of study plan: Open Informatics - Data Science

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Required credits: 85 Elective courses credits: 35 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 49 The role of the block: P

Code of the group: 2018_MOIEP Name of the group: Compulsory subjects of the programme Requirement credits in the group: In this group you have to gain 24 credits Requirement courses in the group: In this group you have to complete 4 courses Credits in the group: 24 Note on the group:

Note on the group	þ.					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Ond ej Drbohlav, Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Р
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek Zden k Hanzálek (Gar.)	Z,ZK	6	3P+2C	L	Р
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	KZ	6		Z,L	Р
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEP Name=Compulsory subjects of the programme

BE4M33PAL	Advanced Algorithms	Z,ZK	6			
Basic graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - pattern matching.						
BE4M35KO	Combinatorial Optimization	Z,ZK	6			
The goal is to show the	problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the ter	m operations rese	earch). Following			
the courses on linear al	gebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmi	ng, heuristics, ap	proximation			
algorithms and state sp	ace search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, p	lanning of humar	n resources,			
scheduling in production	n lines, message routing, scheduling in parallel computers.					
BE4MSVP	Software or Research Project	KZ	6			
Independent work on a	problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approach	ing diploma thesis	s and the project			
advisor is the diploma th	nesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester	and not underesti	mating its timely			
selection. The topic of th	ie project should be relevant to the major branch of the study. The software and research project course must have a clearly d	efined output, suc	ch as a technical			
report or a computer pro	gram. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one	subject of this type	e An exception			
may be granted by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different topic and is led by another						
supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course,						
then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be						
found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk. cvut.cz/cs/study/predmetprojekt.						
BE4M01TAL	Theory of Algorithms	Z,ZK	6			
The course brings theoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems, secondly on the correctness						
of algorithms. Further it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of them investigated. Probabilistic						
algorithms are studied a	and the classes RP and ZZP introduced.					

Code of the group: 2018_MOIEDIP Name of the group: Diploma Thesis

Requirement credits in the group: In this group you have to gain 25 credits Requirement courses in the group: In this group you have to complete 1 course Credits in the group: 25 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEDIP Name=Diploma Thesis

BDIP25Diploma ThesisZ25Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive tinal examination.Z25

Name of the block: Compulsory courses of the specialization Minimal number of credits of the block: 36 The role of the block: PO

Code of the group: 2018_MOIEPO9

Name of the group: Compulsory subjects of the branch

Requirement credits in the group: In this group you have to gain 36 credits

Requirement courses in the group: In this group you have to complete 6 courses

Credits in the group: 36

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M36DS2	Database systems 2 Yuliia Prokop Yuliia Prokop Yuliia Prokop (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M36OSW	Ontologies and Semantic Web	Z,ZK	6	2P+2C	Z	PO
BE4M36SAN	Statistical data analysis Ji í Kléma Ji í Kléma Ji í Kléma (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc Vojt ch Franc (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M36SMU	Symbolic Machine Learning Filip Železný, Ond ej Kuželka, Gustav Šír Ond ej Kuželka Ond ej Kuželka (Gar.)	Z,ZK	6	2P+2C	L	PO
BE4M39VIZ	Visualization Ladislav molík Ladislav molík Ladislav molík (Gar.)	Z,ZK	6	2P+2C	L	PO

Characteristics of the courses of this group of Study Plan: Code=2018_MOIEPO9 Name=Compulsory subjects of the branch

BE4M36DS2	Database systems 2	Z,ZK	6		
The aim is to introduce new trends in database systems to students. We will focus primarily on the current issues of Big Data and the associated problems of distributed storage and					
processing of data. We	will introduce a so-called basic types of NoSQL databases and also the related issue of cloud computing, data storage and d	istributed comput	ations over large		
data files.					
BE4M36OSW	Ontologies and Semantic Web	Z,ZK	6		
The course "Ontologies	and Semantic Web" will guide students through current trends and technologies in the semantic web field. Students will lear	n designing comp	lex ontologies,		
thesauri, formalizing the	m in a suitable formal language, querying them and creating semantic web applications on their top. The second part of the co	urse will be devote	ed to the efficient		
management of ontolog	ical data and other selected topics.				
BE4M36SAN	Statistical data analysis	Z,ZK	6		
This course builds on th	e skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It ma	ainly aims at multi	variate statistical		
analysis and modelling,	i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as	a purely statistica	al counterpart to		
machine learning and d	ata mining courses.				
BE4M33SSU	Statistical Machine Learning	Z,ZK	6		
The aim of statistical machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some prior knowledge about the task.					
This includes typical tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning concepts such as risk minimisation,					
maximum likelihood estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification and regression and to show					
how they can be learned by those concepts.					
BE4M36SMU	Symbolic Machine Learning	Z,ZK	6		
This course consists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its environment, also known as					
reinforcement learning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inference. The third part will cover					
fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an					
introduction to several topics from the computational learning theory, including the online and batch learning settings.					

BE4M39VIZ Visualization

Z.ZK 6 In this course, you will get the knowledge of theoretical background for visualization and the application of visualization in real-world examples. The visualization methods are aimed at exploiting both the full power of computer technologies and the characteristics (and limits) of human perception. Well-chosen visualization methods can help to reveal hidden dependencies in the data that are not evident at the first glance. This in turn enables a more precise analysis of the data or provides a deeper insight into the core of the particular problem represented by the data.

Name of the block: Elective courses Minimal number of credits of the block: 0 The role of the block: V

Code of the group: 2018_MOIEVOL Name of the group: Elective subjects Requirement credits in the group: Requirement courses in the group: Credits in the group: 0

Note on the group: ~Student can choose arbitrary subject of themagister's program (EEM - Electrical Engineering, Power Engineering and Management, EK - Electronics and Communications, KYR - Cybernetics and Robotics, OI - Open Informatics, OES - Open Electronics Systems) which is not part of his curriculum. Student can choose with consideration of recommendation of the branch guarantee. You can find a selection of optional courses organized by the departments on the web site http://www.fel.cvut.cz/cz/education/volitelne-predmety.html

List of courses of this pass:

Code	Name of the course	Completion	Credits			
BDIP25	Diploma Thesis	Z	25			
	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h					
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.						
BE4M01TAL	Theory of Algorithms	Z,ZK	6			
	heoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems					
of algorithms. Furt	her it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of the	em investigated. P	robabilistic			
	algorithms are studied and the classes RP and ZZP introduced.					
BE4M33PAL	Advanced Algorithms	Z,ZK	6			
	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science -	-				
BE4M33SSU	Statistical Machine Learning	Z,ZK	6			
	cal machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	•				
	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	•				
maximum likelihood	l estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	on and regression a	and to show			
	how they can be learned by those concepts.					
BE4M35KO	Combinatorial Optimization	Z,ZK	6			
-	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term c	-				
	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin					
algorithms and st	ate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl scheduling in production lines, message routing, scheduling in parallel computers.	anning of numan r	esources,			
		7 71/	6			
BE4M36DS2	Database systems 2	Z,ZK	-			
	luce new trends in database systems to students. We will focus primarily on the current issues of Big Data and the associated proble We will introduce a so-called basic types of NoSQL databases and also the related issue of cloud computing, data storage and distri		-			
	data files.	buted computation	s over large			
BE4M36OSW	Ontologies and Semantic Web	Z.ZK	6			
	ogies and Semantic Web" will guide students through current trends and technologies in the semantic web field. Students will learn c	, ,	ontologies,			
	them in a suitable formal language, querying them and creating semantic web applications on their top. The second part of the course		• •			
	management of ontological data and other selected topics.					
BE4M36SAN	Statistical data analysis	Z,ZK	6			
This course builds o	on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly	, aims at multivaria	te statistical			
analysis and modelling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a purely statistical counterpart to						
machine learning and data mining courses.						
BE4M36SMU	Symbolic Machine Learning	Z,ZK	6			
This course cons	ists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its	environment, also	known as			
reinforcement learning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inference. The third part will cover						
fundamental topics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally, the last part will provide an						
	introduction to several topics from the computational learning theory, including the online and batch learning settings.					

BE4M39VIZ

Visualization

Z,ZK 6 In this course, you will get the knowledge of theoretical background for visualization and the application of visualization in real-world examples. The visualization methods are aimed at exploiting both the full power of computer technologies and the characteristics (and limits) of human perception. Well-chosen visualization methods can help to reveal hidden dependencies in the data that are not evident at the first glance. This in turn enables a more precise analysis of the data or provides a deeper insight into the core of the particular problem represented by the data.

BE4MSVP

Software or Research Project

K7

6

Independent work on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching diploma thesis and the project advisor is the diploma thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and not underestimating its timely selection. The topic of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defined output, such as a technical report or a computer program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one subject of this type. - An exception may be granted by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different topic and is led by another supervisor. A typical example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the course does not list the course, then at the department 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and elaborating the project can be found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk.cvut.cz/cs/study/predmetprojekt.

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-04, time 04:46.