Study plan

Name of study plan: Erasmus Mundus Master Course - SpaceMaster 2020-22

Faculty/Institute/Others: Faculty of Electrical Engineering

Department:

Branch of study guaranteed by the department: Welcome page

Garantor of the study branch:

Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time

Required credits: 120 Elective courses credits: 0 Sum of credits in the plan: 120

Note on the plan:

Name of the block: Compulsory courses in the program

Minimal number of credits of the block: 98

The role of the block: P

Code of the group: 2020_SPACEMASTER_P

Name of the group: Compulsory subjects of the programme

Requirement credits in the group: In this group you have to gain 98 credits

Requirement courses in the group: In this group you have to complete 10 courses

Credits in the group: 98 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSA	Control Systems for Aircraft and Spacecraft Martin Hrom ik Martin Hrom ik (Gar.)	Z,ZK	7	2P+2L	Z	Р
BE3M35DIP	Diploma Thesis Martin Hlinovský	Z	30	22S	L	Р
BE3M35IDP	Individuální projekt Martin Hlinovský Martin Hlinovský (Gar.)	Z	8	0P+6S	Z	Р
BE3M35ORC	Optimal and robust control design Zden k Hurák Zden k Hurák Zden k Hurák (Gar.)	Z,ZK	8	2P+2C	L	Р
BE3M35SPC	Space Communication	Z,ZK	8	2P+2S	L	Р
BE3M35SPI	Space Instruments	Z,ZK	8	2P+2S	Z	Р
BE3M35SPP	Space Plasma Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35SSM	Space systems, modeling and identification Petr Hušek Petr Hušek	Z,ZK	7	4P+2C	Z	Р
BE3M35SSD	Spacecraft System Design	Z,ZK	8	2P+2S	Z	Р
BE3M35TSS	The Solar System	Z,ZK	7	2P+2S	Z	Р

Characteristics of the courses of this group of Study Plan: Code=2020_SPACEMASTER_P Name=Compulsory subjects of the programme

	<u> </u>				
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7		
System Approach. Obje	System Approach. Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Linear Systems. System Stability				
Uncertainty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of Stochastic Processes.					
BE3M35DIP	Diploma Thesis	Z	30		
Independent final comp	Independent final comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or her branch of study, which will				
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.					
BE3M35IDP	Individuální projekt	Z	8		
Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or					
branch departments. The project will be defended within the framework of a subject.					

BE3M35ORC	Optimal and robust control design	Z,ZK	8		
This advanced course of	This advanced course on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computational design skills. Unifying idea				
of the course is that of n	ninimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guar	anteed. Minimizin	g H2 norm leads		
to the celebrated LQ/LC	QG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness again	st uncertainties in	the model.		
Mu-synthesis as an exte	ensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull	tool for robust co	ntrol design.		
1	e yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to t				
	of semidefinite programming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational tool for solving all the previously				
introduced tasks in option	mal and robust control.				
BE3M35SPC	Space Communication	Z,ZK	8		
BE3M35SPI	Space Instruments	Z,ZK	8		
BE3M35SPP	Space Plasma Physics	Z,ZK	7		
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7		
BE3M35SSD	Spacecraft System Design	Z,ZK	8		

Z,ZK

Name of the block: Compulsory elective courses

Minimal number of credits of the block: 22

The Solar System

The role of the block: PV

BE3M35TSS

Code of the group: 2020_SPACEMASTER_PV Name of the group: Compulsory optionally subjects

Requirement credits in the group: In this group you have to gain at least 22 credits (at most 40)

Requirement courses in the group: In this group you have to complete at least 3 courses (at most 6)

Credits in the group: 22 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35ELS	Electronics in Space	Z,ZK	8	2P+2S	L	PV
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7	2P+2S	Z	PV
BE3M35PAT	Polar Atmosphere	Z,ZK	8	2P+2S	L	PV
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7	2P+2S	L	PV
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	PV
BE3M35SIS	Swedish for International Students 1	Z,ZK	3	2P+2S	Z	PV

Characteristics of the courses of this group of Study Plan: Code=2020_SPACEMASTER_PV Name=Compulsory optionally subjects

BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7
BE3M35PAT	Polar Atmosphere	Z,ZK	8
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7
BE3M35SIS	Swedish for International Students 1	Z,ZK	3

List of courses of this pass:

Code	Name of the course	Completion	Credits		
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7		
System Approach.	Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Lin	ear Systems. Systems	em Stability,		
Uncertai	Uncertainty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of Stochastic Processes.				
BE3M35DIP	Diploma Thesis	Z	30		
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h	ner branch of study	, which will		
be specified b	be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.				
BE3M35ELS	Electronics in Space	Z,ZK	8		
BE3M35IDP	Individuální projekt	Z	8		
Independent work in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be specified by branch department or					
	branch departments. The project will be defended within the framework of a subject.				
BE3M35MESA	Microcomputer Engineering with Space Applications	Z,ZK	7		

BE3M35ORC	Optimal and robust control design	Z,ZK	8		
This advanced course on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computational design skills. Unifying idea					
of the course is that	of the course is that of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranteed. Minimizing H2 norm leads				
to the celebrated	LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains	t uncertainties in th	ne model.		
1 '	an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull t				
	aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c				
of semidefinite prog	ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to	ool for solving all th	e previously		
	introduced tasks in optimal and robust control.				
BE3M35PAT	Polar Atmosphere	Z,ZK	8		
BE3M35PSA	Propulsion with Space Applications	Z,ZK	7		
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7		
BE3M35SIS	Swedish for International Students 1	Z,ZK	3		
BE3M35SPC	Space Communication	Z,ZK	8		
BE3M35SPI	Space Instruments	Z,ZK	8		
BE3M35SPP	Space Plasma Physics	Z,ZK	7		
BE3M35SSD	Spacecraft System Design	Z,ZK	8		
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7		
BE3M35TSS	The Solar System	Z,ZK	7		

For updated information see http://bilakniha.cvut.cz/en/f3.html Generated: day 2024-05-21, time 12:05.