Study plan

Name of study plan: Matematická fyzika

Faculty/Institute/Others: Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Mathematical Physics Type of study: Follow-up master full-time Required credits: 0 Elective courses credits: 120 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 0 The role of the block: P

Code of the group: NMSPMF1 Name of the group: MDP P_MFN 1st year Requirement credits in the group: Requirement courses in the group: In this group you have to complete at least 9 courses Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members)	Completion	Credits	Scope	Semester	Role
	Tutors, authors and guarantors (gar.)					
02GMF2	Geometric Methods in Physics 2 Jan Vysoký Jan Vysoký Libor Šnobl (Gar.)	Z,ZK	5	2+2	L	Р
02GR	Groups and Representations Goce Chadzitaskos, Lenka Motlochová Lenka Motlochová Goce Chadzitaskos (Gar.)	Z,ZK	3	2+1	z	Ρ
02KFA	Quantum Physics Michal Jex Michal Jex Igor Jex (Gar.)	Z,ZK	6	4P+2C	L	Р
02KTPA1	Quantum Field Theory 1 Václav Zatloukal Václav Zatloukal Martin Štefa ák (Gar.)	Z,ZK	8	4P+2C	Z	Р
02KTPA2	Quantum Field Theory 2 Petr Jizba Václav Zatloukal Martin Štefa ák (Gar.)	Z,ZK	8	4P+2C	L	Р
02LAG	Lie Algebras and Lie Groups Libor Šnobl Martin Štefa ák Libor Šnobl (Gar.)	Z,ZK	7	4P+2C	Z	Р
02VUMF1	Research Project 1 Jan Vysoký Libor Šnobl (Gar.)	Z	6	6	Z,L	Р
02VUMF2	Research Project 2 Jan Vysoký, Libor Šnobl, Václav Zatloukal, Martin Štefa ák, Petr Jizba, Josef Schmidt, David Krej i ík, Mat j Tušek, Ji í Tolar Aurél Gábor Gábris Libor Šnobl (Gar.)	КZ	8	8	L,Z	Ρ
02ZS	Winter School of Mathematical Physics Ji í Hrivnák Ji í Hrivnák (Gar.)	Z	1	1týd.	Z	Р

Characteristics of the courses of this group of Study Plan: Code=NMSPMF1 Name=MDP P_MFN 1st year

02GMF2	Geometric Methods in Physics 2	Z,ZK	5			
A theory of gauge fields forms the foundation of contemporary particle physics, namely of the Standard Model. The main goal of this course to to acquaint students with the mathematical						
apparatus required for it	s geometric description. We will focus on theory of principal fiber bundles and the interpretation of gauge fields as connection	n forms on princip	al fiber bundles.			
All theoretical concepts	are demonstrated on particular examples, e.g. frame bundle, Hopf fibration and Yang-Mills field.					
02GR	Groups and Representations	Z,ZK	3			
The aim of the lectures	s to acquaint students with the basic concepts of discrete group theory and their representations. The student will be thoroug	ghly acquainted w	ith the methods			
of classification of finite	groups, decomposition of groups into direct and semidirect products, and with the properties of reducible and irreducible rep	resentations.				
02KFA	Quantum Physics	Z,ZK	6			
The goal of the lecture is	s formulating and developing quantum theory as a physically motivated, but mathematically rigorous theory built upon the an	alysis of bounded	and unbounded			
linear operators on separable Hilbert spaces. Previous knowledge of quantum mechanics is an advantage but not a predisposition for the course. The pivot point is the establishing of						
the main postulates of the	the main postulates of the theory and deriving their consequences for model systems, as well as a detailed study of the most commonly used observables in quantum mechanics. The					
lecture focuses on the e	xactness and proofs of the statements. Some common mistakes resulting from breaking the assumptions of these are also c	liscussed.				

02KTPA1	Quantum Field Theory 1	Z,ZK	8
The lecture aims to intro	oduce the students to both fundamental and applied parts of quantum field theory. The focus is in particular on equations of re	alativistic quantur	n mechanics,
canonical quantization	of scalar and bispinor field, perturbation theory (Feynmans rules) and basics of renormalization. The content of the lecture can	serve as a base	for further study
in fields of exactly solva	ble models, theory of critical phenomena, molecular chemistry and biochemistry or quantum gravity.		
02KTPA2	Quantum Field Theory 2	Z,ZK	8
The lecture aims at intro	oducing the students to the Feynmans functional integral and its applications. The focus is on broadening the knowledge of mo	odern parts of re	ativistic and
non-relativistic quantum	n field theory and statistical physics. The content of the lecture can serve as a base for further study in fields of exactly solvable	e models, theory	of critical
phenomena, molecular	chemistry and biochemistry or quantum gravity.		
02LAG	Lie Algebras and Lie Groups	Z,ZK	7
The aim of the lectures	is get students familiar with the basic concepts of the theory of Lie groups and Lie algebras, and their finite-dimensional repre-	sentations. The s	tudents will also
learn Cartan's classifica	tion of simple complex Lie algebras, which is the fundamental result in this field of mathematics, including its derivation. Empha	sis is put on deta	iled investigation
of explicit examples of t	he introduced mathematical structures and their applications.		
02VUMF1	Research Project 1	Z	6
The research project is	based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the p	oroject superviso	during common
regular meetings and d	iscussions.		
02VUMF2	Research Project 2	ΚZ	8
The research project is	based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the	oroject superviso	during common
regular meetings and d	iscussions.		
02ZS	Winter School of Mathematical Physics	Z	1
The aim of the winter se	, hool of mathematical physics is to significantly improve presentation skills of the students and their ability to follow specialize	d conference pre	sentations in
English. Each student p	resents a specialized talk in English on the topic of his/her own research. The goal is to create such suitable conditions that mot	ivate students to	wards a rigorous
formulation of their own	research together with high quality specialized presentation and abstract. The scientific level of the student presentations is gui	aranteed by audi	ence comprising
experts from CTU and	other universities.		
Codo of the ar			
Code of the gr	oup: NMSPMF2		

Name of the group: MDP P_MFN 2nd year

Requirement credits in the group:

Requirement courses in the group: In this group you have to complete at least 5 courses Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
02ALT	Algebraic Topology Jan Vysoký Jan Vysoký Jan Vysoký (Gar.)	Z,ZK	4	2P+2C	z	Р
02DPMF1	Master Thesis 1 David Krej i ík Libor Šnobl (Gar.)	Z	10	10	Z,L	Р
02DPMF2	Master Thesis 2 David Krej i ík Libor Šnobl (Gar.)	Z	20	20	L,Z	Ρ
02DSMF	Diploma Seminar Ji í Hrivnák Ji í Hrivnák (Gar.)	Z	1	0P+2C	L	Р
02VPSFA	Selected Topics in Statistical Physics and Thermodynamics Igor Jex Martin Stefa ák Igor Jex (Gar.)	Z,ZK	7	4P+2C	Z	Ρ

Characteristics of the courses of this group of Study Plan: Code=NMSPMF2 Name=MDP P_MFN 2nd year

02ALT	Algebraic Topology	Z,ZK	4			
A study of modern mathematical and theoretical physics requires one to acquire an ever increasing knowledge of mathematical apparautus. The main goal of this course is to acquaint						
students with basic met	students with basic methods used in algebraic topology, namely elements of category theory, homototopies, homological algebra and cohomology. An important objective is to enhance					
the mathematical langu	age by concepts appearing universally across disciplines like differential geometry and abstract algebra. During excercise se	ssions, students	will try practical			
calculations of introduce	ed mathematical structures.					
02DPMF1	Master Thesis 1	Z	10			
The diploma project is b	ased on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the	project superviso	r during common			
regular meetings and d	scussions.					
02DPMF2	Master Thesis 2	Z	20			
The diploma project is b	ased on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the	project superviso	r during common			
regular meetings and d	scussions.					
02DSMF	Diploma Seminar	Z	1			
In the first part of the se	minar, students familiarize themselves with the general principles of publishing and presenting scientific work and the formal	requirements for	diploma projects			
at the faculty. The secor	nd part is designed as a practical training for the defence of the diploma project. The students give oral presentations of the $lpha$	urrent state of the	research results			
achieved during the wo	rk on their projects. Each presentation is followed by a discussion on scientific matters as well as on the possibilities of impro	ving the students	performance.			
02VPSFA	Selected Topics in Statistical Physics and Thermodynamics	Z,ZK	7			
The course concentrate	s on some advanced topics of statistical mechanics not discussed in the basic course on thermodynamics and statistical phy	sics. Question co	ncerning density			
matrices, the behaviour	s of nonideal gases and its macroscopic description, microscopic description of phase transitions, the role of fluctuations are	addressed in det	tail.			
NI 641 I						

Name of the block: Elective courses Minimal number of credits of the block: 0 The role of the block: V

Code of the group: NMSPMFV Name of the group: MDP P_MFN Optional courses Requirement credits in the group: Requirement courses in the group: Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
01ASY	Asymptotical Methods Ji í Mikyška Ji í Mikyška Ji í Mikyška (Gar.)	Z,ZK	3	2+1	Z	V
02COX	Coxeter Groups Ji í Hrivnák Ji í Hrivnák Ji í Hrivnák (Gar.)	Z	2	2+0		V
01FAN3	Functional Analysis 3 Pavel Šoví ek Pavel Šoví ek Pavel Šoví ek (Gar.)	Z,ZK	5	2P+2C	Z	V
02FG	Physics of graphene described by Dirac equation Vít Jakubský Vít Jakubský Vít Jakubský (Gar.)	Z	2	2P+0C	L	V
01SPEC	Geometrical Aspects of Spectral Theory David Krej i ík David Krej i ík David Krej i ík (Gar.)	ZK	2	2+0	L	V
02GSKS	Groups of symmetry of quantum systems Jií Tolar Martin Štefa ák Jií Tolar (Gar.)	ZK	2	26P	Z	V
02INB	Integrability and beyond Libor Šnobl, Antonella Marchesiello Libor Šnobl Libor Šnobl (Gar.)	Z	2	2P+0C		V
02KCH	Quantum Chemistry Michal Jex Michal Jex (Gar.)	Z,ZK	3	2P+1C	Z	V
02QIC	Quantum Information and Communication Aurél Gábor Gábris Aurél Gábor Gábris Martin Štefa ák (Gar.)	Z,ZK	4	3P+1C	Z	V
02KO1	Quantum Optics 1 Václav Poto ek Václav Poto ek Igor Jex (Gar.)	Z,ZK	4	2P+2C	Z	V
02KO2	Quantum Optics 2 Václav Poto ek Václav Poto ek Igor Jex (Gar.)	Z,ZK	4	2P+2C	L	V
01KVGR1	Quantum Groups 1 estmír Burdík estmír Burdík (Gar.)	Z	2	2+0	Z	V
)2KVK1	Quantum Circle 1 Martin Štefa ák Pavel Exner (Gar.)	Z	2	0+2	Z	V
02KVK2	Quantum Circle 2 Martin Štefa ák Pavel Exner (Gar.)	Z	2	0+2	L	V
01MMNS	Mathematical Modelling of Non-linear Systems Michal Beneš Michal Beneš Michal Beneš (Gar.)	ZK	3	1P+1C	Z	V
02NGR	Numerical Relativity Josef Schmidt Josef Schmidt Josef Schmidt (Gar.)	ZK	2	2P+0C	L	V
02OKS	Open Quantum Systems Jaroslav Novotný Martin Štefa ák Jaroslav Novotný (Gar.)	Z	2	2+0		V
02PPKT	Advanced Topics of Quantum Theory Pavel Exner Martin Štefa ák Pavel Exner (Gar.)	ZK	2	2+0	L	V
02QPRGA	Quantum Programming Aurél Gábor Gábris, Iskender Yalcinkaya Aurél Gábor Gábris Aurél Gábor Gábris (Gar.)	z	3	1P+1C	L	V
02REL1	Relativistic Physics I Old ich Semerák Martin Štefa ák	Z,ZK	6	4+2	Z	V
02REL2	Relativistic Physics 2 Old ich Semerák Martin Štefa ák Old ich Semerák (Gar.)	Z,ZK	6	4+2	L	V
02RMMF	Solvable Models of Mathematical Physics Ladislav Hlavatý Martin Štefa ák Ladislav Hlavatý (Gar.)	Z	2	2+0	L	V
02SKTPE1	Seminar on quantum field theory 1 Petr Jizba Petr Jizba Petr Jizba (Gar.)	Z	3	2P+1C	Z	V
02SKTPE2	Seminar on quantum field theory 2 Petr Jizba Václav Zatloukal Petr Jizba (Gar.)	Z	3	2P+1C	L	V
01TG	Graph Theory Jan Volec, Petr Ambrož Petr Ambrož Petr Ambrož (Gar.)	ZK	5	4P+0C		V
D1NAH	Jan Volet, Petr Ambroz Petr Ambroz (Gal.) Theory of Random Processes Jan Vybíral Jan Vybíral Jan Vybíral (Gar.)	ZK	3	3+0	Z	V
02UST1	Introduction to Strings 1 Jan Vysoký, Ladislav Hlavatý Jan Vysoký Ladislav Hlavatý (Gar.)	Z	3	2+1	Z	V
02UST2	Jan Vysoký, Ladislav Hlavatý Jan Vysoký Ladislav Hlavatý (Gar.) Introduction to Strings 2 Jan Vysoký, Ladislav Hlavatý Jan Vysoký Ladislav Hlavatý (Gar.)	Z	3	2+1	L	V
01VAM	Jan vyšoky, Ladislav Hlavaty Jan vyšoky Ladislav Hlavaty (Gar.) Variational Methods Michal Beneš Michal Beneš Michal Beneš (Gar.)	ZK	3	1P+1C	Z	V

Characteristics of the courses of this group of Study Plan: Code=NMSPMFV Name=MDP P_MFN Optional courses

01ASY Asymptotical Methods Z,ZK 3 Examples. Addition parts of mathematical analysis (generalized Lebesgue integral, parametric integrals.) Asymptotic relations a expansions - properties; algebraical and analytical operations. Applied asymptotics of sequences and sums; integrals of Laplace and Fourier type.

02COX C	coxeter Groups	Z	2
	on to the theory of Coxeter groups and their invariant theory. The case of the finite Coxeter groups - the reflection groups	_	
	amber and length are defined. General theory of the Coxeter groups, the corresponding bilinear forms and the theory of the		
	tion groups. The study of affine Weyl groups and related objects forms basic example of infinite Coxeter groups. As an inti		
the MacDonald identity and	d the Weyl identity are presented.		
01FAN3 F	unctional Analysis 3	Z,ZK	5
1	al analysis needed for theory of representations of Lie groups and quantum theory. Compact operators, their ideals, unbou		perators, theory
of selfadjoint extension of s	symmetric operators, Stones theorem, quadratic forms and Bochner integral. The basics of Banach algebras and C*-algeb	oras.	
02FG P	hysics of graphene described by Dirac equation	Z	2
	stal. Tight-binding model of graphene and its approximation in terms of Dirac equation. Transport of Dirac fermions in graph		
	ilayer graphene, its description and properties in the external magnetic field. Carbon nanotubes, their classification. Basic		
	iditions and energy. Dirac fermions in curved space, fullerenes. Other Dirac materials.		•
01SPEC G	Geometrical Aspects of Spectral Theory	ZK	2
	f classical physics and the rise of quantum mechanics. Mathematical formulation of quantum theory. Spectral problems in		
	screte and essential spectra. Sobolev spaces. Quadratic forms. Schrödinger operators. 3. Stability of the essential spectru		
	n methods. 4. The role of the dimension of the Euclidean space. Criticality versus subcriticality. The Hardy inequality. Stab		
	ication of Euclidean domains and their basic spectral properties. 6. Vibrational systems. The symmetric rearrangement an	-	
1 ·	Quantum waveguides. Elements of differential geometry: curves, surfaces, manifolds. Effective dynamics. 8. Geometrically		
Hardy-type inequalities in t	ubes.		
02GSKS G	coups of symmetry of quantum systems	ZK	2
	the students of Mathematical Physics - is aimed to introduce them to advanced topics connected with applications of gro		
	eorem on symmetry operations in quantum physics, the classification of projective representations of Lie groups as well a		
	ortant in physics the Euclid, the Poincaré and the Galilei group will be treated by Mackeys method of induced representati		
02INB In	ntegrability and beyond	Z	2
	ems and their integrals of motion. Hamilton-Jacobi equation and separation of variables. Classification of integrable system	_	
-	ty. Perturbative methods in the study of Hamiltonian systems.	0 1	,
	Quantum Chemistry	Z,ZK	3
	emistry. Students will acquire theoretical and practical skills to solve basic problems of theoretical quantum chemistry with		-
	Quantum Information and Communication	Z,ZK	4
	ew ideas to the theory of information leading which ultimately lead to the theory of quantum information, computation and	,	-
	pts of quantum information e.g. quantum algorithms (Shors and Grovers), entanglement, quantum teleportation, quantum		
	an introduction to modern parts of quantum information, e.g. measurement-based and adiabatic quantum computation ar		-
	Quantum Optics 1	Z.ZK	4
	tics, the course shows the construction of a semiclassical Quantum Optics theory of light and light-matter interaction. The	,	•
	qualitative and quantitative description of a broad range of quantum optical phenomena as well as some methods for prac		-
	Quantum Optics 2	Z.ZK	4
	antum Optics 1 by teaching the terminology and computational methods related to the reformulation of Quantum Optics in	,	•
	uum modes and dissipative processes. A concise survey of modern research topics in both theoretical and practical parts		
	erimental research is also provided.	or addition option	
<u> </u>	Quantum Groups 1	7	2
	inated in the 80s in the works of professor L. D. Faddeev and the Leningrad school on the inverse scattering method in or	_	_
	ons in mathematics and mathematical physics such as the classification of nodes, in the theory of integrable systems and	-	
	Quantum Circle 1	Z	2
	istitute on topics of mathematical quantum physics for students and PhD. students.	2	2
	Quantum Circle 2	Z	2
-	istitute on topics of mathematical quantum physics for students and PhD. students.	2	2
		71/	0
	1athematical Modelling of Non-linear Systems	ZK	3 description of
	sic terms and results of the theory of finite- and infinitedimensional dynamical systems generated by evolutionary different	-	description of
	cond part is devoted to the explanation of basic results of the fractal geometry dealing with attractors of such dynamical s		0
	lumerical Relativity	ZK	2
	ivity is currently the most accurate theory of gravity. However, the great complexity of Einstein's equations means that we		
	lutions. With the development of computers, however, the possibility to simulate spacetimes numerically has emerged, but ard theory. The main part of the course will therefore be devoted to formulating Einstein's equations in a form suitable for so		5
	clude coordinate freedom and the potential presence of physical singularities. In the course, we will also get to application		
holes and the extraction of			
	-	Z	2
	Open Quantum Systems	_	
	mposite subsystems and their subsystems, density operator. Pure and mixed states, entropy. Quantum correlations, entar duction to theory of generalized quantum measurement, positive operator-valued measure, physical realizations. Quantur	-	
	erator theoretical framework, examples of quantum operations. Markovian quantum master equation, quantum dynamical	-	-
description of decoherence		seringroups. Dask	
· · · · · · · · · · · · · · · · · · ·	dvanced Topics of Quantum Theory	ZK	2
	avanced ropics of Quantum meory		
	spaces the uncertainty relations the canonical commutational relations, the Stone theorem, algebras of observables, the		ratore Thoro ie
· · · · · · · · · · · · · · · · · · ·	spaces, the uncertainty relations, the canonical commutational relations, the Stone theorem, algebras of observables, the		rators. There is
	ents is modified according to students' requirements.	Schrödinger ope	
	ents is modified according to students' requirements.	Schrödinger ope	3
The goal of the course is to	ents is modified according to students' requirements. Quantum Programming o provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of fund	Schrödinger ope Z lamental quantum	3 communication
The goal of the course is to protocols and quantum alg	ents is modified according to students' requirements. Quantum Programming o provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of func- porthms. The classes are combinations of lectures that introduce the essential concepts and tools, and interactive tutorials	Schrödinger ope Z lamental quantum on how these co	3 communication ncepts are
The goal of the course is to protocols and quantum alg implemented with Python p	ents is modified according to students' requirements. Quantum Programming o provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of func- porithms. The classes are combinations of lectures that introduce the essential concepts and tools, and interactive tutorials programming language. Every week the students will be given Jupyter notebooks involving self-study materials and home	Schrödinger ope Z lamental quantum on how these co work. The course	3 a communication ncepts are s suitable for
The goal of the course is to protocols and quantum alg implemented with Python p bachelor and masters stud	ents is modified according to students' requirements. Quantum Programming or provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of func- porithms. The classes are combinations of lectures that introduce the essential concepts and tools, and interactive tutorials programming language. Every week the students will be given Jupyter notebooks involving self-study materials and home lents from all years and familiarity with quantum mechanics is not necessary. The classes are held entirely online to get the	Schrödinger ope Z lamental quantum on how these co work. The course e most out of the l	3 communication ncepts are s suitable for earning material
The goal of the course is to protocols and quantum alg implemented with Python p bachelor and masters stud and make it internationally	ents is modified according to students' requirements. Quantum Programming to provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise the basic skills for programming functions of lectures that introduce the essential concepts and tools, and interactive tutorials programming language. Every week the students will be given Jupyter notebooks involving self-study materials and home lents from all years and familiarity with quantum mechanics is not necessary. The classes are held entirely online to get the accessible. The quantum SDK Qiskit will be used during the course. Use of own laptops with a quantum SDK installed be	Schrödinger ope Z Iamental quantum on how these co work. The course i e most out of the I fore the course st	3 a communication ncepts are s suitable for earning material art is required.
The goal of the course is to protocols and quantum alg implemented with Python p bachelor and masters stud- and make it internationally 02REL1 R	ents is modified according to students' requirements. Quantum Programming p provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise classes are combinations of lectures that introduce the essential concepts and tools, and interactive tutorials programming language. Every week the students will be given Jupyter notebooks involving self-study materials and home lents from all years and familiarity with quantum mechanics is not necessary. The classes are held entirely online to get the accessible. The quantum SDK Qiskit will be used during the course. Use of own laptops with a quantum SDK installed be celativistic Physics I	Z lamental quantum on how these co work. The course is most out of the I fore the course st Z,ZK	3 a communication ncepts are s suitable for earning material art is required. 6
The goal of the course is to protocols and quantum alg implemented with Python p bachelor and masters stud- and make it internationally 02REL1 R	ents is modified according to students' requirements. Quantum Programming to provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise the basic skills for programming quantum computers, and to use these skills to develop an understanding of funct portise the basic skills for programming functions of lectures that introduce the essential concepts and tools, and interactive tutorials programming language. Every week the students will be given Jupyter notebooks involving self-study materials and home lents from all years and familiarity with quantum mechanics is not necessary. The classes are held entirely online to get the accessible. The quantum SDK Qiskit will be used during the course. Use of own laptops with a quantum SDK installed be	Z lamental quantum on how these co work. The course is most out of the I fore the course st Z,ZK	3 a communication ncepts are s suitable for earning material art is required. 6

			-	
02REL2	Relativistic Physics 2	Z,ZK	6	
Lagrangian formalism and conservation laws in general relativity. Initial value problem, 3+1 splitting and Gauss-Codazzi equations. Hamiltonian formalism in general relativity. Causal				
structure of spacetime.	Geometry of timelike and null congruences.			
02RMMF	Solvable Models of Mathematical Physics	Z	2	
Elementary methods fo	r solving nonlinear differential equations occuring in mathematical physics are explained.			
02SKTPE1	Seminar on quantum field theory 1	Z	3	
The lecture aims to intr	oduce the students to advanced topics of quantum field theory. The focus is mainly on quantization with Feynmans functional	integral.		
02SKTPE2	Seminar on quantum field theory 2	Z	3	
The lecture aims to intr	oduce the students to advanced topics of quantum field theory. The focus is mainly on quantization with Feynmans functional	integral.		
01TG	Graph Theory	ZK	5	
1. Basic notion of graph	theory. 2. Edge and vertex connectivity (Menger Theorem). 3. Bipartite graphs. 4. Trees and forests. 5. Spanning trees (Matri	x-Tree Theorem).	6. Euler tours	
and Hamilton cycles. 7.	Maximal and perfect matching. 8. Edge coloring. 9. Flows in networks. 10. Vertex coloring. 11. Plannar graphs (Kuratowski the	eorem), vertex co	loring of planar	
graphs. 12. Spectrum o	f the adjacency matrix. 13. Extremal graph theory.			
01NAH	Theory of Random Processes	ZK	3	
The course is devoted in	n part to the basic notions of the general theory of random processes and partially to the theory of stationary processes and se	quences both we	akly and strongly	
stationary ones.				
02UST1	Introduction to Strings 1	Z	3	
The goal of the lecture	is to present the basics the (super)string theory			
02UST2	Introduction to Strings 2	Z	3	
The goal of the lecture	is to develop the basics the (super)string Theory explained in UST1			
01VAM	Variational Methods	ZK	3	
The course is devoted to	o the methods of classical variational calculus - functional extrema by Euler equations, second functional derivative, convexity c	or monotonicity. Fu	urther, it contains	
investigation of quadrat	ic functional, generalized solution, Sobolev spaces and variational problem for elliptic PDE's.			

List of courses of this pass:

Code	Name of the course	Completion	Credits		
01ASY	Asymptotical Methods	Z,ZK	3		
Examples. Addition parts of mathematical analysis (generalized Lebesgue integral, parametric integrals.) Asymptotic relations a expansions - properties; algebraical and analytical					
	operations. Applied asymptotics of sequences and sums; integrals of Laplace and Fourier type.				
01FAN3	Functional Analysis 3	Z,ZK	5		
	unctional analysis needed for theory of representations of Lie groups and quantum theory. Compact operators, their ideals, unbounded		ators, theory		
	Ifadjoint extension of symmetric operators, Stones theorem, quadratic forms and Bochner integral. The basics of Banach algebras and	0			
01KVGR1	Quantum Groups 1	Z	2		
u u	was originated in the 80s in the works of professor L. D. Faddeev and the Leningrad school on the inverse scattering method in order				
They have	many applications in mathematics and mathematical physics such as the classification of nodes, in the theory of integrable systems	and the string the			
01MMNS	Mathematical Modelling of Non-linear Systems	ZK	3		
	ts of basic terms and results of the theory of finite- and infinitedimensional dynamical systems generated by evolutionary differential	•	scription of		
	tions and chaos. Second part is devoted to the explanation of basic results of the fractal geometry dealing with attractors of such dyn	namical systems.			
01NAH	Theory of Random Processes	ZK	3		
The course is devot	ed in part to the basic notions of the general theory of random processes and partially to the theory of stationary processes and seque	nces both weakly a	and strongly		
	stationary ones.				
01SPEC	Geometrical Aspects of Spectral Theory	ZK	2		
1. Motivations. The	crisis of classical physics and the rise of quantum mechanics. Mathematical formulation of quantum theory. Spectral problems in cla	ssical physics. 2. E	lements of		
functional analysis.	The discrete and essential spectra. Sobolev spaces. Quadratic forms. Schrödinger operators. 3. Stability of the essential spectrum. V	Veyl's theorem. Bo	und states.		
	erturbation methods. 4. The role of the dimension of the Euclidean space. Criticality versus subcriticality. The Hardy inequality. Stabil	-			
	s classification of Euclidean domains and their basic spectral properties. 6. Vibrational systems. The symmetric rearrangement and t				
the principal free	quency. 7. Quantum waveguides. Elements of differential geometry: curves, surfaces, manifolds. Effective dynamics. 8. Geometrically	induced bound sta	ates and		
	Hardy-type inequalities in tubes.				
01TG	Graph Theory	ZK	5		
	graph theory. 2. Edge and vertex connectivity (Menger Theorem). 3. Bipartite graphs. 4. Trees and forests. 5. Spanning trees (Matrix-				
and Hamilton cycle	es. 7. Maximal and perfect matching. 8. Edge coloring. 9. Flows in networks. 10. Vertex coloring. 11. Plannar graphs (Kuratowski theor	em), vertex colorin	ig of planar		
	graphs. 12. Spectrum of the adjacency matrix. 13. Extremal graph theory.				
01VAM	Variational Methods	ZK	3		
The course is devot	ed to the methods of classical variational calculus - functional extrema by Euler equations, second functional derivative, convexity or m	onotonicity. Furthe	r, it contains		
	investigation of quadratic functional, generalized solution, Sobolev spaces and variational problem for elliptic PDE's.				
02ALT	Algebraic Topology	Z,ZK	4		
	nathematical and theoretical physics requires one to acquire an ever increasing knowledge of mathematical apparautus. The main go				
	methods used in algebraic topology, namely elements of category theory, homototopies, homological algebra and cohomology. An im				
the mathematical la	anguage by concepts appearing universally across disciplines like differential geometry and abstract algebra. During excercise sessi	ons, students will t	ry practical		
	calculations of introduced mathematical structures.				
02COX	Coxeter Groups	Z	2		
	troduction to the theory of Coxeter groups and their invariant theory. The case of the finite Coxeter groups - the reflection groups and				
	Veyl chamber and length are defined. General theory of the Coxeter groups, the corresponding bilinear forms and the theory of their cl				
generalization of t	he reflection groups. The study of affine Weyl groups and related objects forms basic example of infinite Coxeter groups. As an introd	uction to the invar	iant theory		
	the MacDonald identity and the Weyl identity are presented.				

02DPMF1	Master Thesis 1	Z	10
The diploma projec	t is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the proj regular meetings and discussions.	ect supervisor duri	ng common
02DPMF2	Master Thesis 2	Z	20
The diploma projec	t is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the proj regular meetings and discussions.	ect supervisor duri	ng common
02DSMF	Diploma Seminar	Z	1
	ne seminar, students familiarize themselves with the general principles of publishing and presenting scientific work and the formal req	-	
-	second part is designed as a practical training for the defence of the diploma project. The students give oral presentations of the current of the diploma project.		
	he work on their projects. Each presentation is followed by a discussion on scientific matters as well as on the possibilities of improvir		
02FG	Physics of graphene described by Dirac equation	Z	2
	n of crystal. Tight-binding model of graphene and its approximation in terms of Dirac equation.Transport of Dirac fermions in graphene nenomena. Bilayer graphene, its description and properties in the external magnetic field. Carbon nanotubes, their classification. Basi	•	
and related pr	nanoribbons,boundary conditions and energy. Dirac fermions in curved space, fullerenes. Other Dirac materials.	c description of gra	phene
02GMF2	Geometric Methods in Physics 2	Z,ZK	5
	ields forms the foundation of contemporary particle physics, namely of the Standard Model. The main goal of this course to to acquaint s		
	for its geometric description. We will focus on theory of principal fiber bundles and the interpretation of gauge fields as connection fo		
	All theoretical concepts are demonstrated on particular examples, e.g. frame bundle, Hopf fibration and Yang-Mills field.		
02GR	Groups and Representations	Z,ZK	3
	ures is to acquaint students with the basic concepts of discrete group theory and their representations. The student will be thoroughly	-	
	fication of finite groups, decomposition of groups into direct and semidirect products, and with the properties of reducible and irreduci		
02GSKS	Groups of symmetry of quantum systems	ZK	2
-	ferably for the students of Mathematical Physics - is aimed to introduce them to advanced topics connected with applications of group		
-	/igner theorem on symmetry operations in quantum physics, the classification of projective representations of Lie groups as well as th It with. The groups important in physics the Euclid, the Poincaré and the Galilei group will be treated by Mackeys method of induced r	-	ules will be
02INB	Integrability and beyond	7	2
-	nian systems and their integrals of motion. Hamilton-Jacobi equation and separation of variables. Classification of integrable systems	with integrals poly	
,	momenta. Superintegrability. Perturbative methods in the study of Hamiltonian systems.	, man mograto poly	
02KCH	Quantum Chemistry	Z,ZK	3
	antum chemistry. Students will acquire theoretical and practical skills to solve basic problems of theoretical quantum chemistry with f	·	
02KFA	Quantum Physics	Z,ZK	6
The goal of the lect	ture is formulating and developing quantum theory as a physically motivated, but mathematically rigorous theory built upon the analys	is of bounded and	unbounded
linear operators on	separable Hilbert spaces. Previous knowledge of quantum mechanics is an advantage but not a predisposition for the course. The p	ivot point is the est	ablishing of
-	s of the theory and deriving their consequences for model systems, as well as a detailed study of the most commonly used observable	-	hanics. The
	focuses on the exactness and proofs of the statements. Some common mistakes resulting from breaking the assumptions of these a		
02KO1	Quantum Optics 1 Sical optics, the course shows the construction of a semiclassical Quantum Optics theory of light and light-matter interaction. The ain	Z,ZK	4 a provida a
• •	ry allowing the qualitative and quantitative description of a broad range of quantum optical phenomena as well as some methods for		•
02KO2	Quantum Optics 2	Z,ZK	4
	etes Quantum Optics 1 by teaching the terminology and computational methods related to the reformulation of Quantum Optics in ph	· ·	
-	o continuum modes and dissipative processes. A concise survey of modern research topics in both theoretical and practical parts of	-	
	applications in further experimental research is also provided.		
02KTPA1	Quantum Field Theory 1	Z,ZK	8
	to introduce the students to both fundamental and applied parts of quantum field theory. The focus is in particular on equations of rela	-	
canonical quantiza	tion of scalar and bispinor field, perturbation theory (Feynmans rules) and basics of renormalization. The content of the lecture can se		urther study
	in fields of exactly solvable models, theory of critical phenomena, molecular chemistry and biochemistry or quantum gravity		
02KTPA2	Quantum Field Theory 2	Z,ZK	8
	at introducing the students to the Feynmans functional integral and its applications. The focus is on broadening the knowledge of mo quantum field theory and statistical physics. The content of the lecture can serve as a base for further study in fields of exactly solvab	-	
	phenomena, molecular chemistry and biochemistry or quantum gravity.		on on thous
02KVK1	Quantum Circle 1	Z	2
	Seminars of the Doppler Institute on topics of mathematical quantum physics for students and PhD. students.		_
02KVK2	Quantum Circle 2 Seminars of the Doppler Institute on topics of mathematical quantum physics for students and PhD. students.	Z	2
02LAG	Lie Algebras and Lie Groups	Z,ZK	7
	ures is get students familiar with the basic concepts of the theory of Lie groups and Lie algebras, and their finite-dimensional represe	·	
	sification of simple complex Lie algebras, which is the fundamental result in this field of mathematics, including its derivation. Emphasis		
	of explicit examples of the introduced mathematical structures and their applications.		-
02NGR	Numerical Relativity	ZK	2
	y of relativity is currently the most accurate theory of gravity. However, the great complexity of Einstein's equations means that we know		
	relevant solutions. With the development of computers, however, the possibility to simulate spacetimes numerically has emerged, bu		
	e standard theory. The main part of the course will therefore be devoted to formulating Einstein's equations in a form suitable for solvir		-
or general relativity	then include coordinate freedom and the potential presence of physical singularities. In the course, we will also get to applications su holes and the extraction of gravitational waves.	acti as the iocalizat	UDI UI DIACK
02OKS	Open Quantum Systems	Z	2
	on of composite subsystems and their subsystems, density operator. Pure and mixed states, entropy. Quantum correlations, entangle		
	ns. Introduction to theory of generalized quantum measurement, positive operator-valued measure, physical realizations. Quantum o	-	-
of state changes	, superoperator theoretical framework, examples of quantum operations. Markovian quantum master equation, quantum dynamical se	emigroups. Basic n	nodels for
	description of decoherence and thermalization.		

	Advanced Tables of Quantum Theory	71/	2
02PPKT	Advanced Topics of Quantum Theory	ZK	2
Linear operators in	Hilbert spaces, the uncertainty relations, the canonical commutational relations, the Stone theorem, algebras of observables, the So an overlap with 01KF, contents is modified according to students' requirements.	chrodinger operation	ors. There is
02QIC	Quantum Information and Communication	Z.ZK	4
Quantum theory	brought new ideas to the theory of information leading which ultimately lead to the theory of quantum information, computation and	communication. T	he lecture
ntroduces the basi	c concepts of quantum information e.g. quantum algorithms (Shors and Grovers), entanglement, quantum teleportation, quantum cry	yptography and q	uantum erro
correction. I	t also provides an introduction to modern parts of quantum information, e.g. measurement-based and adiabatic quantum computation	on and quantum w	/alks.
02QPRGA	Quantum Programming	Z	3
•	rse is to provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of fundam	•	
protocols and qu	antum algorithms. The classes are combinations of lectures that introduce the essential concepts and tools, and interactive tutorials	on how these cor	ncepts are
•	Python programming language. Every week the students will be given Jupyter notebooks involving self-study materials and homework		
	rs students from all years and familiarity with quantum mechanics is not necessary. The classes are held entirely online to get the mo		0
and make it interna	tionally accessible. The quantum SDK Qiskit will be used during the course. Use of own laptops with a quantum SDK installed befor	e the course start	t is required
02REL1	Relativistic Physics I	Z,ZK	6
Tensor analysis.	Schwarzschild solution of Einstein equations. Black holes and gravitational collapse. Relativistic theory of stellar equilibria and evolu gravitational waves.	tion. Linearized th	neory and
02REL2	Relativistic Physics 2	Z.ZK	6
•	sm and conservation laws in general relativity. Initial value problem, 3+1 splitting and Gauss-Codazzi equations. Hamiltonian formalis		-
0 0	structure of spacetime. Geometry of timelike and null congruences.	0	,
02RMMF	Solvable Models of Mathematical Physics	Z	2
0_1.1.1.1	Elementary methods for solving nonlinear differential equations occuring in mathematical physics are explained.	. –	-
02SKTPE1	Seminar on guantum field theory 1	Z	3
1	sture aims to introduce the students to advanced topics of quantum field theory. The focus is mainly on quantization with Feynmans f	1	1
02SKTPE2	Seminar on guantum field theory 2	Z	3
	sture aims to introduce the students to advanced topics of quantum field theory. The focus is mainly on quantization with Feynmans f		
02UST1	Introduction to Strings 1	Z	3
I	The goal of the lecture is to present the basics the (super)string theory	1	1
02UST2	Introduction to Strings 2	Z	3
I	The goal of the lecture is to develop the basics the (super)string Theory explained in UST1	1	1
02VPSFA	Selected Topics in Statistical Physics and Thermodynamics	Z,ZK	7
The course concent	trates on some advanced topics of statistical mechanics not discussed in the basic course on thermodynamics and statistical physics	s. Question conce	rning densi
matrices, the	behaviours of nonideal gases and its macroscopic description, microscopic description of phase transitions, the role of fluctuations	are addressed in	detail.
02VUMF1	Research Project 1	Z	6
، The research projec	t is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the proj	ect supervisor du	ring commo
	regular meetings and discussions.		
02VUMF2	Research Project 2	KZ	8
، The research projec	t is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the proj	ect supervisor du	ring commo
	regular meetings and discussions.		-
02ZS	Winter School of Mathematical Physics	Z	1
The aim of the wir	nter school of mathematical physics is to significantly improve presentation skills of the students and their ability to follow specialized	conference prese	entations in
English. Each stude	nt presents a specialized talk in English on the topic of his/her own research. The goal is to create such suitable conditions that motiva	ite students towar	ds a rigorou
ormulation of their of	own research together with high quality specialized presentation and abstract. The scientific level of the student presentations is guara	inteed by audienc	e comprisin
	experts from CTU and other universities.		

For updated information see <u>http://bilakniha.cvut.cz/en/FF.html</u> Generated: day 2025-07-14, time 23:10.