Study plan

Name of study plan: Kvantové technologie

Faculty/Institute/Others: Department: Branch of study guaranteed by the department: Welcome page Garantor of the study branch: Program of study: Quantum Technologies Type of study: Follow-up master full-time Required credits: 0 Elective courses credits: 120 Sum of credits in the plan: 120 Note on the plan:

Name of the block: Compulsory courses in the program Minimal number of credits of the block: 0 The role of the block: P

Code of the group: NMSPQT1 Name of the group: MDP P_QTN 1st year Requirement credits in the group: Requirement courses in the group: In this group you have to complete at least 11 courses Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members)	Completion	Credits	Scope	Semester	Role
	Tutors, authors and guarantors (gar.)					
02QIC	Quantum Information and Communication Aurél Gábor Gábris Aurél Gábor Gábris Martin Štefa ák (Gar.)	Z,ZK	4	3P+1C	Z	Р
02KO1	Quantum Optics 1 Václav Poto ek Václav Poto ek Igor Jex (Gar.)	Z,ZK	4	2P+2C	Z	Р
02KO2	Quantum Optics 2 Václav Poto ek Václav Poto ek Igor Jex (Gar.)	Z,ZK	4	2P+2C	L	Р
02KTPA1	Quantum Field Theory 1 Václav Zatloukal Václav Zatloukal Martin Štefa ák (Gar.)	Z,ZK	8	4P+2C	Z	Р
02KTPA2	Quantum Field Theory 2 Petr Jizba Václav Zatloukal Martin Štefa ák (Gar.)	Z,ZK	8	4P+2C	L	Р
12KGOZ1	Quantum Generators of Optical Radiation 1 Helena Jelínková, Michal Jelínek, Michal N mec Michal Jelínek Helena Jelínková (Gar.)	ZK	2	2P	Z	Ρ
12KGOZ2	Quantum Generators of Optical Radiation 2 Jan Šulc Jan Šulc Jan Šulc (Gar.)	Z,ZK	4	2P+2C	L	Р
11TPLQ1	Theory of Solid State 1 Jaroslav Hamrle, Hanuš Seiner Jaroslav Hamrle (Gar.)	ZK	4	2P+2C	Z	Р
11TPLQ2	Theory of Solid State 2 Jaroslav Hamrle, Hanuš Seiner Jaroslav Hamrle (Gar.)	Z,ZK	4	26P+26C	L	Р
02VUQT1	Research Project 1 Martin Štefa ák Martin Štefa ák (Gar.)	Z	6	0P+6C	Z	Р
02VUQT2	Research Project 2 Martin Štefa ák Martin Štefa ák Martin Štefa ák (Gar.)	KZ	8	0P+8C	L	Р

Characteristics of the courses of this group of Study Plan: Code=NMSPQT1 Name=MDP P_QTN 1st year

02QIC	Quantum Information and Communication	Z,ZK	4			
Quantum theory brough	t new ideas to the theory of information leading which ultimately lead to the theory of quantum information, computation and	communication.	The lecture			
introduces the basic cor	ncepts of quantum information e.g. quantum algorithms (Shor's and Grover's), entanglement, quantum teleportation, quantun	n cryptography an	d quantum error			
correction. It also provid	es an introduction to modern parts of quantum information, e.g. measurement-based and adiabatic quantum computation ar	nd quantum walks				
02KO1	Quantum Optics 1	Z,ZK	4			
Building upon classical	optics, the course shows the construction of a semiclassical Quantum Optics theory of light and light-matter interaction. The	aim of the lecture	is to provide a			
robust theory allowing the	ne qualitative and quantitative description of a broad range of quantum optical phenomena as well as some methods for prac	tical computation				
02KO2	Quantum Optics 2	Z,ZK	4			
This course completes Quantum Optics 1 by teaching the terminology and computational methods related to the reformulation of Quantum Optics in phase space. It also extends the						
application areas to continuum modes and dissipative processes. A concise survey of modern research topics in both theoretical and practical parts of Quantum Optics as well as its						
applications in further ex	applications in further experimental research is also provided.					

		7 71/	0	
02KTPA1	Quantum Field Theory 1	Z,ZK	8	
The lecture aims to intro	oduce the students to both fundamental and applied parts of quantum field theory. The focus is in particular on equations of r	elativistic quantur	n mechanics,	
canonical quantization of	of scalar and bispinor field, perturbation theory (Feynman's rules) and basics of renormalization. The content of the lecture ca	n serve as a base	for further study	
in fields of exactly solva	ble models, theory of critical phenomena, molecular chemistry and biochemistry or quantum gravity.			
02KTPA2	Quantum Field Theory 2	Z,ZK	8	
The lecture aims at intro	ducing the students to the Feynman's functional integral and its applications. The focus is on broadening the knowledge of n	nodern parts of re	lativistic and	
non-relativistic quantum	i field theory and statistical physics. The content of the lecture can serve as a base for further study in fields of exactly solvab	le models, theory	of critical	
phenomena, molecular	chemistry and biochemistry or quantum gravity.			
12KGOZ1	Quantum Generators of Optical Radiation 1	ZK	2	
The aim of the lecture is	s to introduce the principles and elements of modern quantum generators of optical radiation and their technical solutions.			
12KGOZ2	Quantum Generators of Optical Radiation 2	Z,ZK	4	
The course is focused to	o the description of quantum generator behaviour using the general principles of quantum statistical physics. The aim of the level	cture is to introduc	e the theoretical	
basis of laser generator	function using semi-classical and fully quantum description of interaction between bonded electrons and resonance radiatio	n.		
11TPLQ1	Theory of Solid State 1	ZK	4	
The content of the lesso	n are basic physical properties of crystalline solid state materials. Students will be introduced to band structure of solids and b	basic materials cla	assification, such	
as metals, semiconduct	ors and dielectrics. The lesson further focuses on magnetic properties, superconductivity and surface properties, a topic mos	stly expected to be	e important in	
construction of quantum computers.				
11TPLQ2	Theory of Solid State 2	Z,ZK	4	
The content of the lesson is based on quantum-mechanical description of crystalline solid state materials, providing a fundamental base of theoretical description of solid state properties.				
02VUQT1	Research Project 1	Z	6	
The research project is I	based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the	project supervisor	during common	
regular meetings and discussions.				
02VUQT2	Research Project 2	KZ	8	
The research project is I	ased on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the	project supervisor	r during common	
regular meetings and di	scussions.			

Code of the group: NMSPQT2 Name of the group: MDP P_QTN 2nd year Requirement credits in the group:

Requirement courses in the group: In this group you have to complete at least 3 courses

Credits in the group: 0

Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
02DPQT1	Diploma Thesis 1 Martin Štefa ák Martin Štefa ák (Gar.)	Z	10	0P+10C	Z	Ρ
02DPQT2	Diploma Thesis 2 Martin Štefa ák Martin Štefa ák (Gar.)	Z	20	0P+20C	L	Ρ
02KTPA3	Quantum Field Theory 3 Petr Jizba Václav Zatloukal Petr Jizba (Gar.)	Z,ZK	8	4P+2C	Z	Ρ

Characteristics of the courses of this group of Study Plan: Code=NMSPQT2 Name=MDP P_QTN 2nd year

•••••••••••••••••••••••••••••••••••••••				
02DPQT1	Diploma Thesis 1	Z	10	
The diploma thesis is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the thesis supervisor during common				
regular meetings and di	scussions.			
02DPQT2	Diploma Thesis 2	Z	20	
The diploma thesis is ba	ased on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the	thesis supervisor	during common	
regular meetings and di	scussions.			
02KTPA3	Quantum Field Theory 3	Z,ZK	8	
The lecture aims at advanced parts of Feynman's functional integral. The focus is on broadening the knowledge of modern parts of relativistic and non-relativistic Quantum Field Theory				
and statistical physics. The content of the lecture can serve as a base for further study in fields of exactly solvable models, theory of critical phenomena, molecular chemistry and				
biochemistry or quantur	n gravity.			

Name of the block: Elective courses Minimal number of credits of the block: 0 The role of the block: V

Code of the group: NMSPQTV Name of the group: MDP P_QTN Optional courses Requirement credits in the group: Requirement courses in the group: Credits in the group: 0 Note on the group:

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
12FDD	Physics of Detection and Detectors of Optical Radiation Ladislav Pina Ladislav Pina Ladislav Pina (Gar.)	ZK	2	2+0	Z	V
02FG	Physics of graphene described by Dirac equation Vit Jakubský Vít Jakubský Vít Jakubský (Gar.)	Z	2	2P+0C	L	V
11FPOR	Physics of Surfaces and Interfaces Ladislav Kalvoda Ladislav Kalvoda (Gar.)	ZK	2	2P+0C	Z	V
12UKP	Ultra-short Pulse Generation Václav Kube ek Václav Kube ek Václav Kube ek (Gar.)	ZK	2	2+0	Z	V
02KCH	Quantum Chemistry Michal Jex Michal Jex (Gar.)	Z,ZK	3	2P+1C	Z	V
02KVK1	Quantum Circle 1 Martin Štefa ák Pavel Exner (Gar.)	Z	2	0+2	Z	V
02KVK2	Quantum Circle 2 Martin Štefa ák Pavel Exner (Gar.)	Z	2	0+2	L	V
18MEMC	Monte Carlo Method František Gašpar, Miroslav Virius Miroslav Virius Miroslav Virius (Gar.)	Z,ZK	4	2P+2C	Z	V
11MONA	Molecular Nanosystems Irena Kratochvílová Irena Kratochvílová Irena Kratochvílová (Gar.)	ZK	2	2	Z	V
12NF	Nanophysics Milan Ši or, Ivan Richter Ivan Richter Milan Ši or (Gar.)	ZK	2	2+0	Z	V
11NAMA	Nanomaterials - Preparation and Characteristics Irena Kratochvílová Irena Kratochvílová Irena Kratochvílová (Gar.)	Z,ZK	2	2+0	L	V
12NOP	Nonlinear Optics Ivan Richter Ivan Richter Ivan Richter (Gar.)	Z,ZK	4	3+1	L	V
1800P	Object Oriented Programming Miroslav Virius Miroslav Virius Miroslav Virius (Gar.)	Z	2	2C	Z	V
110PTX	Optical Properties of Solids Zden k Bryknar Zden k Bryknar (Gar.)	ZK	2	2P+0C	Z	V
02OKS	Open Quantum Systems Jaroslav Novotný Martin Štefa ák Jaroslav Novotný (Gar.)	Z	2	2+0		V
12OREZ	Open Resonators Václav Kube ek Václav Kube ek (Gar.)	Z,ZK	4	2P+1C	Z	V
11SIKL	Computer Simulation of Condensed Matter Ladislav Kalvoda, Petr Sedlák Ladislav Kalvoda (Gar.)	ZK	4	2+2	Z,L	V
18PCP	Advanced C++ Miroslav Virius Miroslav Virius (Gar.)	Z,ZK	4	2P+2C	L	V
02QPRGA	Quantum Programming Aurél Gábor Gábris, Iskender Yalcinkaya Aurél Gábor Gábris Aurél Gábor Gábris (Gar.)	z	3	1P+1C	L	V
12RFO	X-ray Photonics Ladislav Pína Ladislav Pína Ladislav Pína (Gar.)	ZK	2	2+0	Z	V
02REP	Matrix Lie group representations Ji í Hrivnák Ji í Hrivnák Ji í Hrivnák (Gar.)	Z	2	2+0	Z	V
02SKTP	Seminar on quantum field theory Petr Jizba Václav Zatloukal Petr Jizba (Gar.)	Z	3	26P+13C	L	V
01SUP	Start-up Project Pemysl Rubeš Pemysl Rubeš (Gar.)	KZ	2	2P+0C		V
12SOP	Statistical Optics Ivan Richter Ivan Richter Ivan Richter (Gar.)	Z,ZK	2	2+0	L	V
02SZD1	Statistical Data Analysis 1 Miroslav Myška Miroslav Myška (Gar.)	Z,ZK	4	2P+2C	Z	V
02SZD2	Statistical Data Analysis 2 Miroslav Myška Miroslav Myška (Gar.)	Z,ZK	4	2P+2C	L	V
11SUPR	Superconductivity and Low Temperature Zden k Jan , Martin Ledinský Martin Ledinský (Gar.)	ZK	4	4	Z	V
01TG	Graph Theory Jan Volec, Petr Ambrož Petr Ambrož (Gar.)	ZK	5	4P+0C		V
01TIN	Information Theory Tomáš Hobza Tomáš Hobza (Gar.)	ZK	2	2+0	Z	V
02UC1	Particles Accelerators 1 Miroslav Kr s Miroslav Kr s (Gar.)	ZK	2	2P+0C	Z	V
02UC2	Particle Accelerators 2 Miroslav Kr s Miroslav Kr s (Gar.)	ZK	2	2+0		V
12MODO	Selected Chapters of Modern Optics Ivan Richter, Pavel Kwiecien, Lucie Marešová Pavel Kwiecien Ivan Richter (Gar.)	Z	2	2+0	z	V
02VPSFA	Selected Topics in Statistical Physics and Thermodynamics Igor Jex Martin Štefa ák Igor Jex (Gar.)	Z,ZK	7	4P+2C	Z	V
02ZQCD	Quantum Chromodynamics Jana Biel íková Jan epila Jana Biel íková (Gar.)	Z,ZK	6	3+2	Z	V
02ZELW	Introduction to Theory of Electroweak Interactions Jana Biel íková, Boris Tomášik Boris Tomášik (Gar.)	Z,ZK	6	3P+2C	Z	V

Characteristics of the courses of this group of Study Plan: Code=NMSPQTV Name=MDP P_QTN Optional co	ourses	
12FDD Physics of Detection and Detectors of Optical Radiation	ZK	2
Electromagnetic spectrum. Sources of electromagnetic radiation. Radiometric and photometric units. Ideal detector. External and internal photoefect.		
Noise of detector and electronic circuits. Dynamic range. Detectors based on external photoefect. Photocathodes. Electron multipliers. Microchannel p		
based on internal photoefect. Semiconductor detectors. Scintilators. Detectors of IR, VIS and UV radiation. X-ray detectors. Pyroelectricity and pyroe circuits. Human eye.	Jeleciors. Delecio	relectionic
02FG Physics of graphene described by Dirac equation	Z	2
General description of crystal. Tight-binding model of graphene and its approximation in terms of Dirac equation. Transport of Dirac fermions in graph	-	
and related phenomena. Bilayer graphene, its description and properties in the external magnetic field. Carbon nanotubes, their classification. Basic	description of gra	iphene
nanoribbons, boundary conditions and energy. Dirac fermions in curved space, fullerenes. Other Dirac materials.		
11FPOR Physics of Surfaces and Interfaces	ZK	2
Description is provided of basic thermodynamic properties, atomary and electronic structure of surfaces and interfaces. The physical models valid for with the changes due to introduction of new surface/interface. The theoretical treatment is followed by overview of experimental techniques applied to		
and to study of chemical composition and structural arrangement of the latter. In addition, brief overview is given of simulation approaches suitable for		
properties of selected systems. All the subjects are demonstrated on praktical exaples of case studies.	,	
12UKP Ultra-short Pulse Generation	ZK	2
What we mean by ultrashort light pulses (USP) . History of USP generation. Characteristics of USP and their description. Methods of USP generation	-	-
lasers. Methods of mode-locking. Influence of dispersion on propagation and USP generation. Methods of dispersion compensation and its use. Spati		
of measurement USP characteristics. Autocorrelation methods. Spectral phase interferometry and frequency resolved optical gating - SPIDER and F USP.Amplification of USP, temporal stretching and compression - chirped pulses amplification CPA.Selected application of USP.	·ROG. Methods o	f snaping of
02KCH Quantum Chemistry	Z,ZK	3
Introduction to quantum chemistry. Students will acquire theoretical and practical skills to solve basic problems of theoretical quantum chemistry with		-
02KVK1 Quantum Circle 1	Z	2
Seminars of the Doppler Institute on topics of mathematical quantum physics for students and PhD. students.	J	
02KVK2 Quantum Circle 2	Z	2
Seminars of the Doppler Institute on topics of mathematical quantum physics for students and PhD. students.		
18MEMC Monte Carlo Method	Z,ZK	4
This course is devoted to the numerical method Monte Carlo and to its selected applications.		-
11MONA Molecular Nanosystems	ZK	2
The main goal of the lecture is to show possibilities to use selected molecules properties in molecular nanodevices. 12NF Nanophysics	ZK	2
12NF Nanophysics The lecture offers a deep overview on nanophysics, clarifies the terminology, compares various forms of matter and structures, with the emphasis or	I	
electronic and photonic nanostructures. It also reviews terms and methods form solid state physics, and applies them to quantum restricted nanostru		
quantum wells, quantum wires, quantum dots). The attention is further given both to the electrodynamics of metals, its specifics, the lecture discusses	and classifies pla	ismons; it further
systematically explains especially the surface plasmons. Next, the lecture covers the photonic nanostructures, their properties, and relation to electro		
on photonic crystals, it gives their examples in 1D, 2D and 3D. The final attention is given to novel artificial materials, mainly metamaterials with negative topics.	ative refractive ind	lex. The course
is concluded with the student presentations on selected given topics. 11NAMA Nanomaterials - Preparation and Characteristics	Z,ZK	2
The course describes methods of preparation of nanomaterials, their structure, specific properties and applications. The properties of carbon and sili		
analyzed in detail. The aim of the subject is to explain the relationships between physical / chemical properties of nanoparticulate materials and their		
12NOP Nonlinear Optics	Z,ZK	4
The lecture covers both the basic and advanced topics of nonlinear optics, both from classical and quantum viewpoint, consequentially to the previou	s courses of Phys	ical optics. From
a classical viewpoint, the attention is given to optical processes in dielectric media, macroscopic polarization vector, and microscopic description of p		
with dispersion properties of nonlinear susceptibilities (2nd order nonlinearity for noncentrosymmetric media, 3rd order nonlinearity for centrosymmetric media,		
of nonlinear susceptibility tensors. From a quantum (poloclassical) viewpoint, the attention is given to derivation of linear, quadratic, and cubic susce resonant process in two-level media. The processes are classified to nonresonant (parametric) and resonant ones, conservation laws, as well as Manle		
and synchronisms are discussed. The lecture then separately discusses three-wave mixing (second harmonic generation, sum and difference freque	-	-
optical Kerr effect, third harmonic generation. Concentration is given to light induced refractive index changes, selffocusation and automodulation effects	, electrooptical an	d photorefractive
effects, nonlinear light scattering, optical phase conjugation, nonlinear absorption effects, and to nonlinear effects with short pulses. The lecture is con	luded with applica	tions of selected
nonlinear optical effects.		-
1800P Object Oriented Programming	Z	2
This course consists of the contributions of students concerning given topics concerned on technologies uded in program development. 110PTX Optical Properties of Solids	ZK	2
This course gives an introductory into the optical properties of solids. The fundamental principles of absorption, reflection, luminescence and light pro-		
range of materials, including crystalline insulators, semiconductors, and metals. Classical and quantum models are used as appropriate, and the ob-		
from point of their application.		
02OKS Open Quantum Systems	Z	2
Quantum description of composite subsystems and their subsystems, density operator. Pure and mixed states, entropy. Quantum correlations, entar	-	
possible applications. Introduction to theory of generalized quantum measurement, positive operator-valued measure, physical realizations. Quantum		•
of state changes, superoperator theoretical framework, examples of quantum operations. Markovian quantum master equation, quantum dynamical description of decoherence and thermalization.	sernigroups. Basi	
120REZ Open Resonators	Z,ZK	4
Electromagnetic field-geometrical optics. Open resonators and transfer matrices. Wave optics. Huygens principle and Kirchhoff integral. Gaussian bea		
systems. Intensity moments for description of beam propagation. Quality of general beams . Additional beam characteristics. Diffraction theory of op	en resonators. Fa	bry-Perot
interferometer. Optical dielectric layers. Passive open resonators. Stable resonators without apertures. Stable resonators limited by apertures. Resonat		
on the stability limits. Unstable resonators. Unstable resonators with with variable reflectivity mirrors. Resonators containing lenses and polarizing eler medium with gain. Influence of the gain on mode structure and losses in stable and unstable resonators.	nents.Open resor	ators with active
11SIKL Computer Simulation of Condensed Matter	ZK	4
Computer Simulation of Condensed Matter Computer simulation in condensed-matter physics is becoming an important tool used by both experimentalist and theorists to develop new material		
of many practical problems can be transferred from the real to a "virtual" laboratory. During the course, students will be introduced to the theoretical	-	
methods and let to test the acquired knowledge in practical exercises. Each lesson is organized as a tutorial where typical problems are solved with detailed as a tutorial where typical problems are solved as a tutorial where typical problems	-	-
methods used. The course is taking place in Computer classroom of the Department of Solid State Physics. Practical demonstration and exercises and	e using Material S	Studio simulation
environment (Accelrys Software Inc.).		

18PCP	Advanced C++	Z.ZK	4				
	virtual inheritance, variadic templetes, template metaprogramming, template libraries design and implementation, tools for da	, ,	-				
	iagnostic of the templates, concepts, coroutines, modules, ranges, views and other tools introduced in C++ 20, application of	the multithreading	g (execution				
parallelization).							
02QPRGA	Quantum Programming	Z	3				
-	is to provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of func-	-					
	protocols and quantum algorithms. The classes are combinations of lectures that introduce the essential concepts and tools, and interactive tutorials on how these concepts are implemented with Python programming language. Every week the students will be given Jupyter notebooks involving self-study materials and homework. The course is suitable for						
	students from all years and familiarity with quantum mechanics is not necessary. The classes are held entirely online to get the						
	ally accessible. The quantum SDK Qiskit will be used during the course. Use of own laptops with a quantum SDK installed be		-				
12RFO	X-ray Photonics	ZK	2				
	years has passed since the discovery of X-ray radiation. X-ray radiation has become intensively studied and used part of the el	-	-				
	ics in this part of the spectrum is with increasing intensity stimulated by development in the field of astrophysics, hot plasma		0.7				
	nanotechnologies, especially X-ray lithography to enable further development of information technologies. Lectures cover sou X-ray optics and detection.	rces of X-ray radia	ation, X-ray				
02REP	Matrix Lie group representations	7	2				
	tric group, homomorphism, isomorphism, group action, direct product, semidirect product, normal group, simple and semisim	_	-				
	orentz group, Poincaré group. 2. One-parameter group, Lie algebras, Lie group – Lie algebra correspondence, exponential m						
relation between SO(3)	and SU(2). 4. Representation theory, unitary representation, regular representation, equivalent representation, irreducibility, r	educibility, Schur`	s lemma, Weyl`s				
-	representation and their connection to Lie group representation, projective representation. 6. Irreducible representations of SO(
	ntation. 7. Finite-dimensional representations of Lorentz group, tensor product of representations. 8. Representations of SU(3)	, Gell-Mann matrie	ces, weights and				
roots. 9. Young tableaux		7	0				
02SKTP	Seminar on quantum field theory of the students of quantum field theory. The focus is mainly on quantization with Feynman's functiona	Z	3				
01SUP	Start-up Project	KZ	2				
12SOP	Statistical Optics	Z,ZK	2				
	the basics and advanced topics in statistical optics, i.e. the classical theory of optical coherence. It reviews the basics of proba	· · ·	-				
	nastic processes, together with the complex analytical and quasimonochromatic signals. It futher systematically discusses esp						
radiation, in terms of th	e classical scalar 2nd order theory of optical coherence, including elementary concepts and definitions, correlation functions	and their properti	es, time domain,				
	ex degree of coherence, frequency domain, coherence time, area, volume, spectral degree of coherence, and Wiener-Khinch						
	coherent, cross spectrally pure) and radiation from primary sources (Schell model sources). The attention is further given bot	=					
	s, Van Cittert - Zernike theory) and to applications of the coherence theory (Michelson stellar interferometer, correlation spec pects of coherence theory (standard statistical theory of polarization, using either polarization matrices or Stokes parameters),						
	erence aspects, and general vectorial correlation matrices and tensors. The final attention is given to higher order correlation	-	unined treatment				
02SZD1	Statistical Data Analysis 1	Z,ZK	4				
	focused on practical application of methods of experimental data analysis. Students obtain knowledge of different statistical r		usage, fitting				
methods, and testing of	hypothesis. The course quickly recapitulates basis of mathematical probability theory but it is recommended to attend a full course	rse of the mathem	atical probability.				
02SZD2	Statistical Data Analysis 2	Z,ZK	4				
	k will include implementation and testing of a program for analysis of generated data sample. Background understanding of N	-					
l collision will be explained	ed. The course covers methods of data smearing and subsequent deconvolution of data. Basics understanding and usage of	neural networks a	and machine				
11SUPR	Superconductivity and Low Temperature	ZK	4				
	s; low temperature physics, including cooling methods, low temperature technique, and measurement of low temperatures; m						
	rfluidity and superconductivity), quantum crystals and diffusion, mesoscopic phenomena in electron systems, quantum Hall e						
single electron transisto							
01TG	Graph Theory	ZK	5				
1. Basic notion of graph	theory. 2. Edge and vertex connectivity (Menger Theorem). 3. Bipartite graphs. 4. Trees and forests. 5. Spanning trees (Matri	x-Tree Theorem).	6. Euler tours				
	Maximal and perfect matching. 8. Edge coloring. 9. Flows in networks. 10. Vertex coloring. 11. Plannar graphs (Kuratowski th	eorem), vertex co	loring of planar				
	f the adjacency matrix. 13. Extremal graph theory.	71/	-				
01TIN	Information Theory ores the representation and transmission of information. We will focus on the definition and implicati	ZK	2				
	, and the channel coding theorem. These concepts provide a vital background for researchers in the areas of data compressi	i.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
and pattern recognition			sing, controlo,				
02UC1	Particles Accelerators 1	ZK	2				
Introduction to physics	and technology of classical (electrostatic and radiofrequency) particle accelerators.		I				
02UC2	Particle Accelerators 2	ZK	2				
Introduction to physics	and technology of modern and next generation accelerators based on laser and plasma technology.						
12MODO	Selected Chapters of Modern Optics	Z	2				
	elected lectures of different fields of modern optics which are given by both academic and industry experts. The lectures main	ly include the field	ds which are not				
covered in common cou			_				
02VPSFA	Selected Topics in Statistical Physics and Thermodynamics	Z,ZK	7				
	es on some advanced topics of statistical mechanics not discussed in the basic course on thermodynamics and statistical phy s of nonideal gases and its macroscopic description, microscopic description of phase transitions, the role of fluctuations are						
02ZQCD	Quantum Chromodynamics	Z,ZK	6				
	es is to acquire knowledge about basic principles of strong interaction starting from the constituent quark model and SU(3) fla	· ·	-				
-	tic scattering of leptons on nucleons and parton model to basics of Quantum Chromodynamics and its practical applications in						
	and physics of ultra-relativistic heavy-ion collisions.						
02ZELW	Introduction to Theory of Electroweak Interactions	Z,ZK	6				
-	res is to acquire knowledge about theory of weak interaction from Fermi theory of -decay, introduction of charged intermedia						
-	eak interaction in the framework of Standard model including Higgs mechanism. Short student presentations dedicated to exp	perimental discove	eries related to				
une topics covered in th	e lectures (such as first measurements of W and Z gauge bosons, Higgs boson discovery) are envisioned.						

List of courses of this pass:

Code	Name of the course	Completion	Credits
01SUP	Start-up Project	KZ	2
01TG	Graph Theory	ZK	5
	graph theory. 2. Edge and vertex connectivity (Menger Theorem). 3. Bipartite graphs. 4. Trees and forests. 5. Spanning trees (Matrix- es. 7. Maximal and perfect matching. 8. Edge coloring. 9. Flows in networks. 10. Vertex coloring. 11. Plannar graphs (Kuratowski theor graphs. 12. Spectrum of the adjacency matrix. 13. Extremal graph theory.		
01TIN	Information Theory	ZK	2
Information theory	explores the fundamental limits of the representation and transmission of information. We will focus on the definition and implication orem, and the channel coding theorem. These concepts provide a vital background for researchers in the areas of data compression and pattern recognition.	s of (information) e	entropy, the
02DPQT1	Diploma Thesis 1	Z	10
	is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the the regular meetings and discussions.		-
02DPQT2	Diploma Thesis 2		20
-	is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the the regular meetings and discussions.		-
02FG	Physics of graphene described by Dirac equation	Z	2
	of crystal. Tight-binding model of graphene and its approximation in terms of Dirac equation. Transport of Dirac fermions in graphene		
and related pri	enomena. Bilayer graphene, its description and properties in the external magnetic field. Carbon nanotubes, their classification. Basi nanoribbons,boundary conditions and energy. Dirac fermions in curved space, fullerenes. Other Dirac materials.	c description of gra	apriene
02KCH	Quantum Chemistry	Z,ZK	3
	antum chemistry. Students will acquire theoretical and practical skills to solve basic problems of theoretical quantum chemistry with f		
02KO1	Quantum Optics 1	Z,ZK	4
• •	sical optics, the course shows the construction of a semiclassical Quantum Optics theory of light and light-matter interaction. The ain ry allowing the qualitative and quantitative description of a broad range of quantum optical phenomena as well as some methods for		
02KO2	Quantum Optics 2	Z,ZK	4
	etes Quantum Optics 1 by teaching the terminology and computational methods related to the reformulation of Quantum Optics in ph	-	
application areas to	o continuum modes and dissipative processes. A concise survey of modern research topics in both theoretical and practical parts of applications in further experimental research is also provided.		s well as its
02KTPA1	Quantum Field Theory 1	Z,ZK	8
	to introduce the students to both fundamental and applied parts of quantum field theory. The focus is in particular on equations of relation of scalar and bispinor field, perturbation theory (Feynman's rules) and basics of renormalization. The content of the lecture can set	erve as a base for fu	
	in fields of exactly solvable models, theory of critical phenomena, molecular chemistry and biochemistry or quantum gravity		0
02KTPA2	Quantum Field Theory 2 at introducing the students to the Fourmac's functional integral and its applications. The focus is an broadening the knowledge of mo	Z,ZK	8 iviatia and
	at introducing the students to the Feynman's functional integral and its applications. The focus is on broadening the knowledge of mo quantum field theory and statistical physics. The content of the lecture can serve as a base for further study in fields of exactly solvab phenomena, molecular chemistry and biochemistry or quantum gravity.		
02KTPA3	Quantum Field Theory 3	Z,ZK	8
	advanced parts of Feynman's functional integral. The focus is on broadening the knowledge of modern parts of relativistic and non-rel		
	ysics. The content of the lecture can serve as a base for further study in fields of exactly solvable models, theory of critical phenomer biochemistry or quantum gravity.		-
02KVK1	Quantum Circle 1	Z	2
0211111	Seminars of the Doppler Institute on topics of mathematical quantum physics for students and PhD. students.	, – 1	-
02KVK2	Quantum Circle 2	Z	2
	Seminars of the Doppler Institute on topics of mathematical quantum physics for students and PhD. students.		
02OKS	Open Quantum Systems	Z	2
	on of composite subsystems and their subsystems, density operator. Pure and mixed states, entropy. Quantum correlations, entangle	-	-
	ns. Introduction to theory of generalized quantum measurement, positive operator-valued measure, physical realizations. Quantum o superoperator theoretical framework, examples of quantum operations. Markovian quantum master equation, quantum dynamical su description of decoherence and thermalization.		
02QIC	Quantum Information and Communication	Z,ZK	4
	brought new ideas to the theory of information leading which ultimately lead to the theory of quantum information, computation and		
introduces the basi	c concepts of quantum information e.g. quantum algorithms (Shor's and Grover's), entanglement, quantum teleportation, quantum cr	yptography and qu	antum error
correction.	It also provides an introduction to modern parts of quantum information, e.g. measurement-based and adiabatic quantum computation	n and quantum wa	alks.
02QPRGA	Quantum Programming	Z	3
-	rse is to provide the basic skills for programming quantum computers, and to use these skills to develop an understanding of fundam	-	
	antum algorithms. The classes are combinations of lectures that introduce the essential concepts and tools, and interactive tutorials Python programming language. Every week the students will be given Jupyter notebooks involving self-study materials and homework		-
	er's students from all years and familiarity with quantum mechanics is not necessary. The classes are held entirely online to get the m		
	ationally accessible. The quantum SDK Qiskit will be used during the course. Use of own laptops with a quantum SDK installed befor		-
02REP	Matrix Lie group representations	Z	2
	nmetric group, homomorphism, isomorphism, group action, direct product, semidirect product, normal group, simple and semisimple		
groups, SO(n), Sl	J(n), Lorentz group, Poincaré group. 2. One-parameter group, Lie algebras, Lie group – Lie algebra correspondence, exponential map	. 3. Universal cover	ring group,

relation between SO(3) and SU(2). 4. Representation theory, unitary representation, regular representation, equivalent representation, irreducibility, reducibility, Schur's lemma, Weyl's theorem. 5. Lie algebra representation and their connection to Lie group representation, projective representation. 6. Irreducible representations of SO(3) and SU(2), raising and lowering operators, spin representation. 7. Finite-dimensional representations of Lorentz group, tensor product of representations. 8. Representations of SU(3), Gell-Mann matrices, weights and roots. 9. Young tableaux. 02SKTP Seminar on quantum field theory 3 7 The lecture aims to introduce the students to advanced topics of quantum field theory. The focus is mainly on quantization with Feynman's functional integral 02SZD1 Statistical Data Analysis 1 7 7K 4 The course is primarily focused on practical application of methods of experimental data analysis. Students obtain knowledge of different statistical methods and their usage, fitting methods, and testing of hypothesis. The course quickly recapitulates basis of mathematical probability theory but it is recommended to attend a full course of the mathematical probability. 02SZD2 Statistical Data Analysis 2 Individual student's work will include implementation and testing of a program for analysis of generated data sample. Background understanding of Monte Carlo generators for hadron collision will be explained. The course covers methods of data smearing and subsequent deconvolution of data. Basics understanding and usage of neural networks and machine learning will be covered. 02UC1 Particles Accelerators 1 ΖK 2 Introduction to physics and technology of classical (electrostatic and radiofrequency) particle accelerators. ZK 02UC2 Particle Accelerators 2 2 Introduction to physics and technology of modern and next generation accelerators based on laser and plasma technology 02VPSFA Selected Topics in Statistical Physics and Thermodynamics Z,ZK 7 The course concentrates on some advanced topics of statistical mechanics not discussed in the basic course on thermodynamics and statistical physics. Question concerning density matrices, the behaviours of nonideal gases and its macroscopic description, microscopic description of phase transitions, the role of fluctuations are addressed in detail. 02VUQT1 Research Project 1 7 6 The research project is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the project supervisor during common regular meetings and discussions. 02VUQT2 **Research Project 2** ΚZ 8 The research project is based on a topic approved by the administrators of the programme, department and by the dean. The student is guided by the project supervisor during common regular meetings and discussions. 027ELW Introduction to Theory of Electroweak Interactions 7.7K 6 The goal of these lectures is to acquire knowledge about theory of weak interaction from Fermi theory of -decay, introduction of charged intermediate vector boson to unification of electromagnetic and weak interaction in the framework of Standard model including Higgs mechanism. Short student presentations dedicated to experimental discoveries related to the topics covered in the lectures (such as first measurements of W and Z gauge bosons, Higgs boson discovery) are envisioned. 02ZQCD Quantum Chromodynamics 7.7K 6 The goal of these lectures is to acquire knowledge about basic principles of strong interaction starting from the constituent quark model and SU(3) flavour symmetry, studies of nucleon structure in deep inelastic scattering of leptons on nucleons and parton model to basics of Quantum Chromodynamics and its practical applications in the context of current experiments in high energy physics and physics of ultra-relativistic heavy-ion collisions. 11FPOR Physics of Surfaces and Interfaces ΖK 2 Description is provided of basic thermodynamic properties, atomary and electronic structure of surfaces and interfaces. The physical models valid for bulk systems are juxtaposed with the changes due to introduction of new surface/interface. The theoretical treatment is followed by overview of experimental techniques applied to preparation of surface structures and to study of chemical composition and structural arrangement of the latter. In addition, brief overview is given of simulation approaches suitable for analysis and prediction of properties of selected systems. All the subjects are demonstrated on praktical exaples of case studies. 11MONA Molecular Nanosystems ΖK 2 The main goal of the lecture is to show possibilities to use selected molecules properties in molecular nanodevices. Z.ZK 11NAMA Nanomaterials - Preparation and Characteristics 2 The course describes methods of preparation of nanomaterials, their structure, specific properties and applications. The properties of carbon and silicon nanobodies and layers will be analyzed in detail. The aim of the subject is to explain the relationships between physical / chemical properties of nanoparticulate materials and their main structural features. Optical Properties of Solids 110PTX 2 This course gives an introductory into the optical properties of solids. The fundamental principles of absorption, reflection, luminescence and light propagation are discussed for a wide range of materials, including crystalline insulators, semiconductors, and metals. Classical and quantum models are used as appropriate, and the observed phenomena are discussed from point of their application. 11SIKL **Computer Simulation of Condensed Matter** ΖK 4 Computer simulation in condensed-matter physics is becoming an important tool used by both experimentalist and theorists to develop new materials and technologies. Thus, solution of many practical problems can be transferred from the real to a "virtual" laboratory. During the course, students will be introduced to the theoretical background of basic computation methods and let to test the acquired knowledge in practical exercises. Each lesson is organized as a tutorial where typical problems are solved with detailed explication of the computation methods used. The course is taking place in Computer classroom of the Department of Solid State Physics. Practical demonstration and exercises are using Material Studio simulation environment (Accelrys Software Inc.). 11SUPR Superconductivity and Low Temperature ZK 4 The subject of course is: low temperature physics, including cooling methods, low temperature technique, and measurement of low temperatures; macroscopic quantum phenomena in quantum fluids (superfluidity and superconductivity), quantum crystals and diffusion, mesoscopic phenomena in electron systems, quantum Hall effects, Coulomb blockade and single electron transistor. Theory of Solid State 1 11TPLQ1 7K Λ The content of the lesson are basic physical properties of crystalline solid state materials. Students will be introduced to band structure of solids and basic materials classification, such as metals, semiconductors and dielectrics. The lesson further focuses on magnetic properties, superconductivity and surface properties, a topic mostly expected to be important in construction of quantum computers. 11TPLQ2 Theory of Solid State 2 7.7K 4 The content of the lesson is based on quantum-mechanical description of crystalline solid state materials, providing a fundamental base of theoretical description of solid state properties. 12FDD Physics of Detection and Detectors of Optical Radiation ΖK 2 Electromagnetic spectrum. Sources of electromagnetic radiation. Radiometric and photometric units. Ideal detector. External and internal photoefect. Quantum fluctuations of radiation. Noise of detector and electronic circuits. Dynamic range. Detectors based on external photoefect. Photocathodes. Electron multipliers. Microchannel plates. Image intensifiers. Detectors based on internal photoefect. Semiconductor detectors. Scintilators. Detectors of IR, VIS and UV radiation. X-ray detectors.. Pyroelectricity and pyrodetectors. Detector electronic circuits. Human eye. 12KGOZ1 Quantum Generators of Optical Radiation 1 ZK 2 The aim of the lecture is to introduce the principles and elements of modern quantum generators of optical radiation and their technical solutions.

101/0070	Quantum Concreters of Optical Rediction 2	771/	4
12KGOZ2	Quantum Generators of Optical Radiation 2	Z,ZK	4
	sed to the description of quantum generator behaviour using the general principles of quantum statistical physics. The aim of the lectur sis of laser generator function using semi-classical and fully quantum description of interaction between bonded electrons and reson		e theoretical
12MODO	Selected Chapters of Modern Optics	Z	2
The subject conter	nts selected lectures of different fields of modern optics which are given by both academic and industry experts. The lectures mainly i	nclude the fields wh	nich are not
	covered in common courses of optics.		
12NF	Nanophysics	ZK	2
	's a deep overview on nanophysics, clarifies the terminology, compares various forms of matter and structures, with the emphasis on	I I	d relates
	otonic nanostructures. It also reviews terms and methods form solid state physics, and applies them to quantum restricted nanostruct		
	antum wires, quantum dots). The attention is further given both to the electrodynamics of metals, its specifics, the lecture discusses an		
	lains especially the surface plasmons. Next, the lecture covers the photonic nanostructures, their properties, and relation to electronic	-	
	als, it gives their examples in 1D, 2D and 3D. The final attention is given to novel artificial materials, mainly metamaterials with negativ		-
	is concluded with the student presentations on selected given topics.		
12NOP	Nonlinear Optics	Z,ZK	4
	both the basic and advanced topics of nonlinear optics, both from classical and quantum viewpoint, consequentially to the previous of	· · ·	-
	nt, the attention is given to optical processes in dielectric media, macroscopic polarization vector, and microscopic description of pola		· .
	operties of nonlinear susceptibilities (2nd order nonlinearity for noncentrosymmetric media, 3rd order nonlinearity for centrosymmetric		-
	ceptibility tensors. From a quantum (poloclassical) viewpoint, the attention is given to derivation of linear, quadratic, and cubic suscep		
-	n two-level media. The processes are classified to nonresonant (parametric) and resonant ones, conservation laws, as well as Manley-R		-
	are discussed. The lecture then separately discusses three-wave mixing (second harmonic generation, sum and difference frequency	• /	U .
	hird harmonic generation. Concentration is given to light induced refractive index changes, selffocusation and automodulation effects, ele	-	
effects, nonlinear li	ght scattering, optical phase conjugation, nonlinear absorption effects, and to nonlinear effects with short pulses. The lecture is conlude nonlinear optical effects.	ed with applications	of selected
12OREZ	Open Resonators	Z,ZK	4
Electromagnetic	field-geometrical optics. Open resonators and transfer matrices. Wave optics. Huygens principle and Kirchhoff integral. Gaussian bea	ms in one dimensio	onal optic
	sity moments for description of beam propagation. Quality of general beams . Additional beam characteristics. Diffraction theory of op		
interferometer. Opt	ical dielectric layers. Passive open resonators. Stable resonators without apertures. Stable resonators limited by apertures. Resonator of	letuning sensitivity.	Resonators
on the stability limit	ts. Unstable resonators. Unstable resonators with with variable reflectivity mirrors. Resonators containing lenses and polarizing elemer	ts.Open resonators	with active
	medium with gain. Influence of the gain on mode structure and losses in stable and unstable resonators.		
12RFO	X-ray Photonics	ZK	2
	dred years has passed since the discovery of X-ray radiation. X-ray radiation has become intensively studied and used part of the elect	1 1	
	notonics in this part of the spectrum is with increasing intensity stimulated by development in the field of astrophysics, hot plasma phy		
	and nanotechnologies, especially X-ray lithography to enable further development of information technologies. Lectures cover sour		
	interaction with matter, X-ray optics and detection.		, <i>/</i>
12SOP		Z,ZK	2
	Statistical Optics		
	both the basics and advanced topics in statistical optics, i.e. the classical theory of optical coherence. It reviews the basics of probabilit		
	stochastic processes, together with the complex analytical and quasimonochromatic signals. It futher systematically discusses especi		-
	of the classical scalar 2nd order theory of optical coherence, including elementary concepts and definitions, correlation functions and		
	complex degree of coherence, frequency domain, coherence time, area, volume, spectral degree of coherence, and Wiener-Khinchi		
	elds (coherent, cross spectrally pure) and radiation from primary sources (Schell model sources). The attention is further given both	-	
· · ·	uations, Van Cittert - Zernike theory) and to applications of the coherence theory (Michelson stellar interferometer, correlation spectro		
	I aspects of coherence theory (standard statistical theory of polarization, using either polarization matrices or Stokes parameters), tog		d treatment
	rization and coherence aspects, and general vectorial correlation matrices and tensors. The final attention is given to higher order co		
12UKP	Ultra-short Pulse Generation	ZK	2
What we mean b	y ultrashort light pulses (USP) . History of USP generation. Characteristics of USP and their description. Methods of USP generation.	Principle of mode-	locking in
lasers. Methods of	mode-locking.Influence of dispersion on propagation and USP generation.Methods of dispersion compensation and its use.Spatio-te	emporal optics of US	SP.Methods
of measurement	USP characteristics. Autocorrelation methods. Spectral phase interferometry and frequency resolved optical gating - SPIDER and F		haping of
	USP.Amplification of USP, temporal stretching and compression - chirped pulses amplification CPA.Selected application of U	SP.	
18MEMC	Monte Carlo Method	Z,ZK	4
	This course is devoted to the numerical method Monte Carlo and to its selected applications.	'	
1800P	Object Oriented Programming	Z	2
	This course consists of the contributions of students concerning given topics concerned on technologies uded in program develo	I I	
18PCP			
			4
This lecture covere	Advanced C++	Z,ZK	4 ompile time
	Advanced C++ the virtual inheritance, variadic templetes, template metaprogramming, template libraries design and implementation, tools for data to	Z,ZK pe processing in c	ompile time
	Advanced C++	Z,ZK pe processing in c	ompile time

For updated information see <u>http://bilakniha.cvut.cz/en/FF.html</u> Generated: day 2024-05-20, time 06:48.