Recomended pass through the study plan

Name of the pass: Specialization Medical Instrumentation - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Medical Electronics and Bioinformatics - Specialization Medical Instrumentation Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Medical Electronics and Bioinformatics Type of study: Follow-up master full-time Note on the pass:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of seme	ster: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEAM31LET	Medical Instrumentation and Devices Jan Havlík Jan Havlík Jan Havlík (Gar.)	Z,ZK	6	2P+2L	Z	Р
BEEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Ivana Nová, Josef ernohous, Radek Havlí ek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z	Ρ
BE4M36SAN	Statistical data analysis Ji í Kléma Ji í Kléma Ji í Kléma (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
BE4M33PAL	Advanced Algorithms Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	PV
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc, Boris Flach Vojt ch Franc Boris Flach (Gar.)	Z,ZK	6	2P+2C	Z	PV
2018_MBIOEPPV2	Compulsory elective subjects of the programme BEAM31ADA,BE4M33PAL, (see the list of groups below)	Min. cours. 4 Max. cours. 4	Min/Max 24/24			PV

Number of semes	ster: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEAM31BSG	Biological signals Petr Ježdík, Roman mejla, Michal Novotný Roman mejla Roman mejla (Gar.)	Z,ZK	6	2P+2L	L	Р
BEAM33ZSL	Medical Imaging Systems Jan Kybic, Robert Holaj, André Sopczak, Jan Petr, André Sopczak Jan Kybic Jan Kybic (Gar.)	Z,ZK	6	2P+2C	L	Ρ
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek	Z,ZK	6	3P+2C	L	PV
BE4M33MPV	Computer Vision Methods Georgios Tolias, Ji í Matas, Jan ech, Dmytro Mishkin, Ond ej Drbohlav Ond ej Drbohlav Ji í Matas (Gar.)	Z,ZK	6	2P+2C	L	PV
2018_MBIOEPPV2	Compulsory elective subjects of the programme BEAM31ADA,BE4M33PAL, (see the list of groups below)	Min. cours. 4 Max. cours. 4	Min/Max 24/24			PV

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BEMPROJ6	Diploma Project Jan Kybic, Roman mejla, Petr Pošík, Vratislav Fabián Petr Pošík Jan Kybic (Gar.)	Z	6	0p+6s	Z,L	Р
BEAM33ZMO	Medical Image Processing Jan Kybic Jan Kybic Jan Kybic (Gar.)	Z,ZK	6	2P+2C	Z	PV
2018_MBIOEPPV2	Compulsory elective subjects of the programme BEAM31ADA,BE4M33PAL, (see the list of groups below)	Min. cours. 4 Max. cours. 4	Min/Max 24/24			PV
2018_MBIOEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of semester: 4								
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role		
BDIP30	Diploma Thesis	Z	30	22s	L	Р		

List of groups of courses of this pass with the complete content of members of individual groups

Kód		Name of the group o group (for specificati	f courses and on see here o	codes of members of this r below the list of courses)	Com	pletion	Credit	s Scope	Semester	Role	
2018_MBIC	DEPPV2	Compulsory el	ective subject	s of the programme	Min. cour 4 Max. cour 4		Min/Ma	ax		PV	
BEAM31ADA	Adaptive s	ignal processing	BE4M33PAL	Advanced Algorithms BEAM31		AOL /	Applied optoelectronics in medic		edic		
BEAM36BIN	Bioinforma	tics	BEAM02BIO	Biosensors BE4M35		BE4M35	KO (Combinatorial Optimization			
BE4M33MPV	Computer	Vision Methods	BE2M31DSPA	Digital Signal Processing		BEAM17	17EMC Introduction to Electromag		Electromagne	gnetic	
BEAM33ZMO	Medical Im	age Processing	BEAM31MOA	Modeling and analysis of brain a		BEAM33	3MOS Modeling and		Modeling and Simulation		
BE4M36MBG	Molecular	Biology and Genetics	BEAM33NIN	Neuroinformatics		BE4M33	3SSU Statistica		tistical Machine Learning		
BE4M36SMU	Symbolic N	Aachine Learning									
2018_MBIOEVOL		Elective subj	ects	Min.	cours. 0	Min/Ma 0/999	x		v		

List of courses of this pass:

Code	le Name of the course					
BDIP30	Diploma Thesis	Z	30			
Independent final o	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or l	ner branch of study	, which will			
be specified b	y branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examin	nation.			
BE2M31DSPA	Digital Signal Processing	Z,ZK	6			
The subject gives of	verview about basic methods of digital signal processing and their applications (examples from speech and biological signal proces	sing): disrete-time	signals and			
systems, signal cl	naracteristics in time and frequency domain, Fourier transform, fast algorithms for DFT computation, introduction to digital filter desig	n, digital filtering ir	n time and			
	frequency domain, decimation and interpolation and their usage in filter banks, basics of LPC analysis. Further details can be foun	ıd at <a< td=""><td></td></a<>				
	href=http://noel.feld.cvut.cz/vyu/be2m31dspa>http://noel.feld.cvut.cz/vyu/be2m31dspa .					
BE4M33MPV	Computer Vision Methods	Z,ZK	6			
The course covers selected computer vision problems: search for correspondences between images via interest point detection, description and matching, image stitching, detection,						
recognition and segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. This course is also part of the						
inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More						
	information is available at https://prg.ai/minor.					

BE4M33PAL	Advanced Algorithms	Z,ZK	6
Basic	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science -	pattern matching.	
BE4M33SSU	Statistical Machine Learning	Z,ZK	6
The aim of statisti	cal machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	or knowledge abou	ut the task.
This includes typic	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	pts such as risk m	inimisation,
maximum likelihood	d estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	on and regression a	and to show
	how they can be learned by those concepts.		
BE4M35KO	Combinatorial Optimization	Z,ZK	6
-	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term of	-	
	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmir		
algorithms and s	tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl	anning of human re	esources,
55 (1/201/50	scheduling in production lines, message routing, scheduling in parallel computers.		-
BE4M36MBG	Molecular Biology and Genetics	Z,ZK	6
BE4M36SAN	Statistical data analysis	Z,ZK	6
	on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly		
analysis and mode	lling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a p	ourely statistical co	unterpart to
	machine learning and data mining courses.		-
BE4M36SMU	Symbolic Machine Learning	Z,ZK	6
	sists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its		
	arning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inferen		
fundamental topi	cs from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally	, the last part will p	orovide an
	introduction to several topics from the computational learning theory, including the online and batch learning settings.		-
BEAM02BIO	Biosensors	Z,ZK	6
	ces the physical, electronic, biological principles of biosensors and provides information on past, present and future technologies. Va		
	c applications (such as detection of glucose, urea, proteins, cells, bacteria, etc.) are explained. In addition, the course introduces the		
and nanomaterial	s in biosensors to achieve reliable and sensitive devices for diagnosis at the point of care, in food safety or environmental monitoring	. we will also discu	iss current
DEAMAZENAO	challenges and future perspectives for various applications of biosensors.	7 71/	0
BEAM17EMC	Introduction to Electromagnetic Compatibility	Z,ZK	6
The course dwel	Is on problems of electromagnetic compatibility. Students obtain the basic knowledges in the field of electromagnetic compatibility - e	lectromagnetic inte	erference,
	susceptibility and testing methods. The course leads to gain professional skills in the field of electrical engineering.		-
BEAM31ADA	Adaptive signal processing	Z,ZK	6
	des a basic discourse on adaptive algorithms for filtering, decorrelation, separation and beamforming. The course explains adaptive	-	
prediction, includin	g analysis, implementation and practical applications. Next, it describes the algorithms for adaptive decorrelation and separation of r	nultidimensional sig	gnals. Last,
DEALACIA	the course provides analysis of adaptive beamforming techniques.		-
BEAM31AOL	Applied optoelectronics in medicine	Z,ZK	6
BEAM31BSG	Biological signals	Z,ZK	6
	sed to the native and evoked biosignals used in clinical medicine and current methods of capturing, processing, recording and evaluate	-	
	portant biological signals, the students are introduced with their genesis, and nature and physiological characteristics of the signals	-	
instruments. Studer	nts are introduced also with the physical and mathematical models. In laboratory exercises, students have the opportunity to capture t	heir own biological	signals and
DE MARINET	their subsequent processing in MATLAB.		•
BEAM31LET	Medical Instrumentation and Devices	Z,ZK	6
-	fundamental principles applied within the modern medical devices and systems, esp. from the point of view of functional blocks and el		•
	al medical equipments including electrocardiographs, electroencephalographs, bedside and central monitors, equipments for anestes		
	ments for clinical laboratory, electrostimulators, cardiostimulators and defibrilators, blood pressure and flow measurement (including		
BEAM31MOA	Modeling and analysis of brain activity	Z,ZK	6
BEAM33MOS		Z,ZK	6
-	chniques being frequently used in biomedical engineering and corresponding software tools: Matlab-Simulink, Modelica. Techniques		
	them. Types of models, continuous and discrete time models, linear and nonlinear models with lumped parameters, models and their		
	alization and model creation for a selected system, its identification, verification and interpretation. Equilibrium states (homeostasis) a		
	d feedback systems. Use of fuzzy-neuronal models in biomedicine. Models of separate systems and whole constellations being defin Models of cellular and physiological control, population models. Application of models for artificial organs production.		ngineenng.
BEAM33NIN	Neuroinformatics	7 71/	6
	cs Course concentrates on modelling of neurons, stochastic learning on cellular level, information coding and decoding in brain and sir		
	from clinical practices are provided throughout the course. The labs focus on signal neuron analysis from human and animal b		J. LAAMpies
BEAM33ZMO			6
	Medical Image Processing bes algorithms for digital image processing of 2D and 3D images, with emphasis on biomedical applications. We shall therefore conc	Z,ZK	6 t often used
-	edical image processing: segmentation, registration, and classification. The methods will be illustrated by a range of examples on me		
	the algorithms during the practice sessions. Because of the very large overlap between courses A6M33ZMO and A4M33ZMO, the other set algorithms during the practice sessions. Because of the very large overlap between courses A6M33ZMO and A4M33ZMO, the other set algorithms during the practice sessions.		
	the algorithms during the practice sessions. Decause of the very large overlap between courses Advission and Advission, the this year.		
BEAM33ZSL	Medical Imaging Systems	Z,ZK	6
	the principles, design and properties of currently used medical imaging devices. We shall deal with 2D microscopic, X-ray and ultrasou		
	ch as Doppler ultrasound. We will also study tomographic (3D) imaging systems: computed tomography (CT), magnetic resonance ima		-
	MRI (fMRI) and nuclear imaging methods (PET,SPECT). For more information see https://cw.fel.cvut.cz/wiki/courses/zsl		
BEAM36BIN	Bioinformatics	Z,ZK	6
BEEZM	Safety in Electrical Engineering for a master's degree	7	0
	des for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical haze	. – .	-
	Students of all programs periodic training guidelines for reality and occupational safety and gives knowledge of electrical haza		. 5, 5tuay.
BEMPROJ6	Diploma Project	Z	6
	k in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be speci	1 1	
	branch departments. The project will be defended within the framework of a subject.	, station dop	
L	· · · · · · · · · · · · · · · · · · ·		

For updated information see http://bilakniha.cvut.cz/en/f3.html

Generated: day 2024-05-19, time 18:55.