Recomended pass through the study plan

Name of the pass: SpaceMaster - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Erasmus Mundus Master Course - SpaceMaster 2018 Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Cybernetics and Robotics Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of semes	ster: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35SPI	Space Instruments	Z,ZK	8	2P+2S	L	Р
BE3M35SPP	Space Physics	Z,ZK	7	2P+2S	Z	Р
BE3M35TSS	The Solar System	Z,ZK	7	2P+2S	Z	Р

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35APH	Atmospheric Physics	Z,ZK	8	2P+2S	L	Р
BE3M35SEI	Spacecraft Environment Interactions	Z,ZK	7	2P+2S	L	Р
2018_SPACEMASTER_PV	Compulsory optionally subjects BE3M35ELS,BE3M35PAT, (see the list of groups below)	Min. cours. 2 Max. cours. 6	Min/Max 15/41			PV

Number of seme	ester: 3					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7	2P+2L	Z	Р
BE3M35IDP	Individuální projekt	Z	8	0P+6S	Z	Р
BE3M35SSM	Space systems, modeling and identification	Z,ZK	7	4P+2C	Z	Р

Number of sem	nester: 4					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE3M35DIP	Diploma Thesis	Z	30	22S	L	Р
BE3M35ORC	Optimal and robust control design	Z,ZK	8	2P+2C	L	Р

List of groups of courses of this pass with the complete content of members of individual groups

Kód		Name of the group o group (for specification	f courses and on see here o	codes of members of this r below the list of courses)	Com	pletion	Credit	s Scope	Semester	Role
			Min.	cours.						
				2	Min/Ma	ax				
2018_SPACEM	ASIER_PV	Compu	ulsory optiona	ally subjects	Max	cours.	15/41			PV
						6				
BE3M35ELS	Electronics	s in Space	BE3M35PAT	Polar Atmosphere		BE3M35	PSA	Propulsion wit	th Space Appli	catio
BE3M35SPC	Space Cor	nmunication	BE3M35SPS	Spacecraft Subsystems		BE3M35	SIS	Swedish for Ir	nternational Stu	uden

List of courses of this pass:

Code	Name of the course	Completion	Credits
BE3M35APH	Atmospheric Physics	Z,ZK	8
BE3M35CSA	Control Systems for Aircraft and Spacecraft	Z,ZK	7
System Approach.	Object, System, Model. Dynamic Systems Continuous and Discrete Time, Qualitative Analysis of Systems. Poincare Map, Chaos. Lin	ear Systems. System	em Stability,
Uncertair	nty and Robustness. Controllability and Observability. State Feedback, State Injection, Duality. Stochastic Systems, Realization of St	ochastic Processes	6.
BE3M35DIP	Diploma Thesis	Z	30
Independent final of	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h	her branch of study	, which will
be specified b	by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the compreh	ensive final examir	nation.
BE3M35ELS	Electronics in Space	Z,ZK	8
BE3M35IDP	Individuální projekt	Z	8
Independent work	in the form of a project. A student will choose a topic from a range of topics related to his or her branch of study, which will be special	fied by branch dep	artment or
	branch departments. The project will be defended within the framework of a subject.		
DEGMOSODO	Optimal and robust control design	Z.ZK	8
BE3M35ORC	optimar and robast control accign		
This advanced cou of the course is that to the celebrated	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains	nal design skills. U eed. Minimizing H2 t uncertainties in th	norm leads
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tr aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to	nal design skills. U eed. Minimizing H2 t uncertainties in th ool for robust contr course, introduction	norm leads ne model. ol design. to the topic
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control.	nal design skills. U eed. Minimizing H2 tt uncertainties in th ool for robust contr course, introduction ool for solving all th	norm leads ne model. ol design. to the topic e previously
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante I LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control. Polar Atmosphere	Anal design skills. U eed. Minimizing H2 it uncertainties in th ool for robust contr course, introduction ool for solving all th Z,ZK	norm leads ne model. ol design. to the topic e previously 8
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control.	nal design skills. U eed. Minimizing H2 tt uncertainties in th ool for robust contr course, introduction ool for solving all th	norm leads ne model. ol design. to the topic e previously
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog BE3M35PAT	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante I LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control. Polar Atmosphere	Anal design skills. U eed. Minimizing H2 it uncertainties in th ool for robust contr course, introduction ool for solving all th Z,ZK	norm leads ne model. ol design. to the topic e previously 8
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog BE3M35PAT BE3M35PSA	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation to f minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guarante LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c rramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control. Polar Atmosphere Propulsion with Space Applications	al design skills. U eed. Minimizing H2 t uncertainties in th ool for robust contr course, introduction ool for solving all th Z,ZK Z,ZK	norm leads ne model. ol design. to the topic e previously 8 7
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog BE3M35PAT BE3M35PSA BE3M35SEI	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation to of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranted LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull to aside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c ramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control. Polar Atmosphere Propulsion with Space Applications Spacecraft Environment Interactions	al design skills. U eed. Minimizing H2 at uncertainties in th ool for robust contr course, introduction ool for solving all th Z,ZK Z,ZK Z,ZK	norm leads ne model. ol design. to the topic e previously 8 7 7 7
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog BE3M35PAT BE3M35PSA BE3M35SEI BE3M35SIS	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation to of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranted LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tradiside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c rramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control. Polar Atmosphere Propulsion with Space Applications Spacecraft Environment Interactions Swedish for International Students 1	al design skills. U eed. Minimizing H2 to uncertainties in th ool for robust contri- course, introduction ool for solving all th Z,ZK Z,ZK Z,ZK Z,ZK	norm leads ne model. ol design. to the topic e previously 8 7 7 7 3
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog BE3M35PAT BE3M35PSA BE3M35SEI BE3M35SIS BE3M35SPC	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation to of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranted LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tradiside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c rramming and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control. Polar Atmosphere Propulsion with Space Applications Spacecraft Environment Interactions Swedish for International Students 1 Space Communication	al design skills. U eed. Minimizing H2 to uncertainties in the col for robust contri- course, introduction col for solving all the Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK	norm leads ne model. ol design. to the topic e previously 8 7 7 7 3 8
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog BE3M35PAT BE3M35PSA BE3M35SEI BE3M35SPC BE3M35SPI	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation to of minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranted LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tradiside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the c introduced tasks in optimal and robust control. Polar Atmosphere Propulsion with Space Applications Spacecraft Environment Interactions Swedish for International Students 1 Space Communication Space Instruments	al design skills. U eed. Minimizing H2 at uncertainties in the ool for robust contre- course, introduction ool for solving all the Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK Z,Z	norm leads ne model. ol design. to the topic e previously 8 7 7 7 3 8 8 8
This advanced cou of the course is that to the celebrated Mu-synthesis as a Standing a little bit a of semidefinite prog BE3M35PAT BE3M35PSA BE3M35SEI BE3M35SPC BE3M35SPI BE3M35SPP	rse on control design will cover modern methods for optimal and robust control design. Emphasis will be put on practical computation to f minimization of a system norm. Depending on which norm is minimized, different properties of the resulting controller are guaranted LQ/LQG optimal control trading off the performance and the effort, while minimizing Hinf norm shifts the focus to robustness agains an extensions to Hinf optimal control design that take the structure of the uncertainty into consideration represents a very powerfull tradiside yet being useful in space missions are the methods for time-optimal and suboptimal control. As a self-contained add-on to the control trading and linear matrix inequalities (LMI) will be made, as these constitute a very elegant theoretial and a powerful computational to introduced tasks in optimal and robust control.	al design skills. U eed. Minimizing H2 t uncertainties in the cool for robust contri- course, introduction ool for solving all the Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK Z,ZK Z,Z	norm leads ne model. ol design. to the topic e previously 8 7 7 7 3 8 8 8 8 7

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-15, time 23:02.