Recomended pass through the study plan

Name of the pass: Specialization Internet of Things - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Open Informatics - Internet of Things 2018 Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Open Informatics Type of study: Bachelor full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of sen	nester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B01DMA	Discrete Mathematics Petr Habala Petr Habala Petr Habala (Gar.)	Z,ZK	5	2P+2S	Z	Р
B0B01LAG	Linear Algebra Ji í Velebil, Jakub Rondoš, Natalie Žukovec, Daniel Gromada, Josef Dvo ák, Mat j Dostál Ji í Velebil Ji í Velebil (Gar.)	Z,ZK	8	4P+2S	Z	Ρ
B0B36PRP	Procedural Programming Jan Faigl Jan Faigl Jan Faigl (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
B4B33RPH	Solving Problems and other Games Tomáš Svoboda, Petr Pošík Petr Pošík Tomáš Svoboda (Gar.)	KZ	6	2P+3C	Z	Ρ
BEZZ	Basic Health and Occupational Safety Regulations Vladimír K la, Radek Havlí ek, Ivana Nová Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z	Ρ
2018_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their					
Code	<i>members)</i> Tutors, <i>authors</i> and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0B35APO	Computer Architectures Pavel Píša, Richard Šusta, Petr Št pán Pavel Píša Pavel Píša (Gar.)	Z,ZK	5	2P+2L	L	Р
BEZB	Safety in Electrical Engineering for a Bachelor's Degree Vladimír K Ia, Radek Havlí ek, Ivana Nová Radek Havlí ek Vladimír K Ia (Gar.)	Z	0	2BP+2BC	Z,L	Ρ
B0B01LGR	Logic and Graphs Natalie Žukovec, Mat j Dostál, Alena Gollová Alena Gollová Marie Demlová (Gar.)	Z,ZK	5	3P+2S	Z,L	Р
B0B01MA1	Mathematical Analysis 1 Josef Dvo ák, Martin K epela, Josef Tkadlec, Veronika Sobotíková Josef Tkadlec Josef Tkadlec (Gar.)	Z,ZK	7	4P+2S	Z,L	Ρ
B4B38PSIA	Computer Networks Ji í Novák, Jan Holub Ji í Novák Ji í Novák (Gar.)	Z,ZK	5	2P+2L	L	Р
B0B36PJV	Programming in Java Martin Mudroch, Ji í Vok ínek, Ladislav Serédi Ji í Vok ínek Ji í Vok ínek (Gar.)	Z,ZK	6	2P+3C+7D	L	Р
2018_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4B33ALG	Algorithms Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša Marko Genyk-Berezovskyj (Gar.)	Z,ZK	6	2P+2C	z	Ρ
B0B01MA2	Mathematical Analysis 2 Miroslav Korbelá , Petr Hájek, Martin Bohata, Jaroslav Tišer, Karel Pospíšil, Paola Vivi, Hana Tur inová Petr Hájek Jaroslav Tišer (Gar.)	Z,ZK	7	4P+2S	L,Z	Ρ
B4B35OSY	Operating Systems Petr Št pán, Michal Sojka Michal Sojka Michal Sojka (Gar.)	Z,ZK	4	2P+2C	Z	Ρ
B0B01PST	Probability and Statistics Kate ina Helisová Kate ina Helisová Petr Hájek (Gar.)	Z,ZK	7	4P+2S	Z	Р
B4B17EAM	Electromagnetism Zbyn k Škvor, Pavel Hazdra Jan Kra ek Zbyn k Škvor (Gar.)	Z,ZK	6	2P+2C	Z	ΡZ

Number of seme	ster: 4					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B0B36DBS	Database Systems Martin imná, Václav Kratochvíl Martin imná Martin imná (Gar.)	Z,ZK	6	2P+2C+4D	L	Ρ
B0B33OPT	Optimization Tomáš Werner, Petr Olšák, Mirko Navara, Tomáš Kroupa Tomáš Werner Tomáš Werner (Gar.)	Z,ZK	7	4P+2C	Z,L	Ρ
B4B36PDV	Parallel and Distributed Computing Mat j Kafka, Michal Jakob Michal Jakob Michal Jakob (Gar.)	Z,ZK	6	2P+2C	L	Ρ
B0B35LSP	Logic systems and processors Richard Šusta, Martin Hlinovský Martin Hlinovský Zden k Hurák (Gar.)	Z,ZK	6	2P+2L	L	ΡZ
B4B32PKS	Computer and Communication Networks Leoš Bohá, Tomáš Van k Ivan Pravda Leoš Bohá (Gar.)	Z,ZK	6	2P + 2C	L	ΡZ

Number of seme	ester: 5					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
B4BPROJ6	Unassisted project Tomáš Svoboda, Petr Pošík, Ji í Šebek, Jaroslav Sloup, Ivan Jelínek, Katarína Žmolíková Petr Pošík	Z	6	0+2	Z,L	Ρ
B4B38NVS	Embedded Systems Design Jan Fischer, Vojt ch Petrucha Jan Fischer Jan Fischer (Gar.)	Z,ZK	6	2P+2L	Z	ΡZ
B4B35PSR	Real-time Systems Programming Michal Sojka Michal Sojka (Gar.)	Z,ZK	6	2P+2C	Z	ΡZ
2018_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of semester: 6						
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BBAP20	Bachelor thesis Roman mejla Roman mejla (Gar.)	Z	20	12S	L,Z	Р
2018_BOIVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
2018 BOIVOL		Min. cours.	Min/Max			
2010_BOIVOL	Volitelné odborné p edm ty	0	0/999			v

List of courses of this pass:

Code	Name of the course	Completion	Credits
B0B01LAG	Linear Algebra	Z,ZK	8
	he initial parts of linear algebra. Firstly, the basic notions of a linear space and linear mappings are covered (linear dependence and indu		
	of matrices (determinants, inverse matrices, matrices of a linear map, eigenvalues and eigenvectors, diagonalisation, etc) is covered solving systems of linear equations, the geometry of a 3D space (including the scalar product and the vector product) and S'	VD.	1
B0B01LGR	Logic and Graphs	Z,ZK	5
I his course covers	basics of mathematical logic and graph theory. Syntax and semantics of propositional and predicate logic are introduced. The importance and of the relationship between a formula and its model is stressed. Further, basic notions from graph theory are introduce		onsequence
B0B01MA1	Mathematical Analysis 1	Z,ZK	7
	The aim of the course is to introduce students to basics of differential and integral calculus of functions of one variable.	,	I
B0B01MA2	Mathematical Analysis 2	Z,ZK	7
The subject cover	s an introduction to the differential and integral calculus in several variables and basic relations between curve and surface integrals. series and power series with application to Taylor and Fourier series.	Other part contair	ns function
B0B01PST	Probability and Statistics	Z,ZK	7
B0B33OPT	Optimization	Z,ZK	7
The course provide	s an introduction to mathematical optimization, specifically to optimization in real vector spaces of finite dimension. The theory is illustration	ed with a number o	of examples.
DOD25ADO	You will refresh and extend many topics that you know from linear algebra and calculus courses.	771	F
B0B35APO B0B35LSP	Computer Architectures Logic systems and processors	Z,ZK Z,ZK	5 6
	es computing resources' basic hardware structures, design, and architecture. It provides an overview of the possibilities of performing c		-
	g embedded processor systems with peripherals on modern FPGA programmable logic circuits, which are increasingly widely used t	•	
	DL, from logic to more complex sequential circuits to practical finite state machine (FSM) designs. They will also master the correct d	0 1	0
simulation. Practica	I problems are solved using development boards that hundreds of leading universities worldwide also use. The course ends with RISC and pipeline processing. [last updated January 2024]	-V processor struc	ture, cache,
B0B36DBS	Database Systems	Z,ZK	6
-	ned as a basic database course mainly aimed at the student ability to design a relational data model and to use the SQL language f		
	to choose the appropriate degree of transaction isolation. Students will also get acquainted with the most commonly used indexing architecture and their management. They will verify their knowledge during the elaboration of a continuously submitted seminar	-	ise system
B0B36PJV	Programming in Java	Z,ZK	6
	on the basics of algorithms and programming from the first semester and introduces students to the Java environment. The course al		-
	e. The topics of the course includes exceptions, event handling, and building a graphical interface. Basic library methods, working wit An important topic is models of multithreaded applications and their implementation. Practical exercises of practical skills and knowled		
	sks and semester work, which will be submitted continuously through the source code version control system. The semester work so	-	
	correctness and efficiency of the code, as well as points that take into account the quality of the source codes, their readability and	-	
B0B36PRP	Procedural Programming	Z,ZK	6
	vanies basic programming emphasizing the data representation in computer memory. Furthermore, the concepts of linked data structu tudents master the practical implementation of simple individual tasks. The course emphasizes acquiring programming habits for cre		
	me time, the effort is to build students an overview of the program operation, data model, memory access, and management. Therefore	•	
	s a direct link between the program data structures and their representation in the computer memory. Students will get acquainted not		-
u u	with debugging and profiling. Labs aim to acquire practical skills of implementing simple individual tasks, emphasizing functionality ar lence is developed by a set of homework with the possibility of optional and bonus assignments. The final task is an integration of a l	, ,	
	plementations. Evaluation of coding style motivated by writing legible, understandable, and maintainable codes is also a part of the s		ig existing
B4B01DMA	Discrete Mathematics	Z,ZK	5
	nts meet some important topics from the field of discrete mathematics. Namely, they will explore divisibility and calculations modulo n		-
relations, mappin	igs, cardinality of sets, induction, and recurrence equations. The second aim of this course is to teach students the language of math actively, and introduce them to mathematics as science.	ematics, both pass	sively and
B4B17EAM	Electromagnetism	Z,ZK	6
	uces the basics of electrical engineering, electromagnetic fields, and simple active/passive electronic circuits. We will also explore op		
	on understanding the physical principles behind these phenomena. During the lessons, we not only write on the board but also dem and conduct small experiments.	onstrate computer	simulations
B4B32PKS	Computer and Communication Networks	Z,ZK	6
	se is to familiarize students with current trends in the switched local networks and the key functions of routing protocols in IP networks.	-	
	s to concepts of ensuring the information security in the communication networks. An integral part of the course is also an explanatio quality of services in data networks and features of some file sharing application protocols. The course is aimed rather primarily pra-		-
B4B33ALG	Algorithms	Z,ZK	6
	Igorithms development is constructed with minimum dependency to programming language; nevertheless the lectures and seminars ctures, basic algorithms, recursive functions, abstract data types, stack, queues, trees, searching, sorting, special application algorith		
	Students are able to design and construct non-trivial algorithms and to evaluate their effectivity.		nanning.
B4B33RPH	Solving Problems and other Games	KZ	6
	ion is to let students to deal with real-world problems properly. When working on real problems the student shall learn how to decom how to test and validate individual steps and so on. Many problems will actually be beyond the first-year-student skills. And many pro-		
	unsolved parts should motivate the students to study difficult theoretical subjects. They should generate the important questions. Idea		
	be eager to study deeper about informatics. The course also explains the basis of the object oriented design, software testing, ways	-	-
	codes.		

B4B35OSY	Operating Systems	Z,ZK	4
Lecture introduces	operation system's basic concepts and principles as processes, threads, communication and synchronization, virtual memory, drive	rs, file systems, ba	sic security
aspects. These top	ics are theoretically described and demonstrated on Linux and Windows OS with multi-core systems. Practical exercises from OS in	C programming la	nguage will
	be solved on labs. Students will work with Linux OS and micro-kernel NOVA.		
B4B35PSR	Real-time Systems Programming	Z,ZK	6
The goal of this co	urse is to provide students with basic knowledge about software development for real-time systems, for example in control and embe	edded applications	. The main
	ed systems equipped with a real-time operating system (RTOS). Lectures will cover real-time systems theory, which can be used to for		
	other set of lectures will introduce methods and techniques used for development of safety-critical systems, whose failure may have	•	
-	nts will first solve a few simple tasks to familiarize them with basic components of VxWorks RTOS and to benchmark the used OS and	-	
	represent the typical criteria for assessing the suitability of a given platform for the given application. After the simple tasks, student		x task of
	itical motion control application which will require full utilization of RTOS features. All the tasks at the labs will be implemented in C (,	-
B4B36PDV	Parallel and Distributed Computing	Z,ZK	6
B4B38NVS	Embedded Systems Design	Z,ZK	6
	The course deals with design of embedded systems using ARM based microcontrollers.		
B4B38PSIA	Computer Networks	Z,ZK	5
B4BPROJ6	Unassisted project	Z	6
BBAP20	Bachelor thesis	Z	20
BEZB	Safety in Electrical Engineering for a Bachelor's Degree	Z	0
The purpose of the	safety course is to give the students basic knowledge of electrical equipment and installation as to avoid danger arising from operation	n of it. This introduc	ctory course
contains funda	mentals of Safety Electrical Engineering. In this way the students receive qualification of instructed person that enables them to work	k on electrical equi	pment.
BEZZ	Basic Health and Occupational Safety Regulations	Z	0
The guidelines were	e worked out based on The Training Scheme for Health and Occupational Safety designed for employees and students of the Czech	Technical Universit	y in Prague,
which was provide	d by the Rector's Office of the CTU. Safety is considered one of the basic duties of all employees and students. The knowledge of He	ealth and Occupati	onal Safety
	regulations forms an integral and permanent part of qualification requirements. This program is obligatory.		

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2025-07-14, time 21:00.