Recomended pass through the study plan

Name of the pass: Branch Data Science - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Open Informatics - Data Science Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Open Informatics Type of study: Follow-up master full-time Note on the pass:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of seme	ester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M33PAL	Advanced Algorithms Marko Genyk-Berezovskyj, Daniel Pr ša Daniel Pr ša (Gar.)	Z,ZK	6	2P+2C	Z	Ρ
BEEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Ivana Nová, Josef ernohous, Radek Havlí ek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	Z	Ρ
BE4M36DS2	Database systems 2 Yuliia Prokop Yuliia Prokop (Gar.)	Z,ZK	6	2P+2C	Z	PO
BE4M36SAN	Statistical data analysis Ji í Kléma Ji í Kléma Ji í Kléma (Gar.)	Z,ZK	6	2P+2C	Z	PO
2018_MOIEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of semes	ster: 2					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4M35KO	Combinatorial Optimization Zden k Hanzálek Zden k Hanzálek	Z,ZK	6	3P+2C	L	Ρ
BE4M01TAL	Theory of Algorithms Marie Demlová, Natalie Žukovec Marie Demlová Marie Demlová (Gar.)	Z,ZK	6	3P+2S	L	Ρ
BE4M36SMU	Symbolic Machine Learning Filip Železný, Ond ej Kuželka, Gustav Šír Ond ej Kuželka Ond ej Kuželka (Gar.)	Z,ZK	6	2P+2C	L	PO
BE4M39VIZ	Visualization Ladislav molík Ladislav molík Ladislav molík (Gar.)	Z,ZK	6	2P+2C	L	PO
2018_MOIEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

Number of seme	ster: 3					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BE4MSVP	Software or Research Project Ji í Šebek, Petr Pošík, Jaroslav Sloup, Katarína Žmolíková, Tomáš Drábek Petr Pošík	KZ	6		Z,L	Р
BE4M36OSW	Ontologies and Semantic Web	Z,ZK	6	2P+2C	Z	PO
BE4M33SSU	Statistical Machine Learning Jan Drchal, Vojt ch Franc, Boris Flach Vojt ch Franc Boris Flach (Gar.)	Z,ZK	6	2P+2C	Z	PO

2018_MOIEVOL	Elective subjects	Min. cours.	Min/Max		Ň
		0	0/999		V

Number of semes	ster: 4					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BDIP25	Diploma Thesis	Z	25	22s	L	Р
2018_MOIEVOL	Elective subjects	Min. cours. 0	Min/Max 0/999			V

List of groups of courses of this pass with the complete content of members of individual groups

Kód	Name of the group of courses and codes of members of this group (for specification see here or below the list of courses)	Completion	Credits	Scope	Semester	Role
	EVOL Elective subjects	Min. cours.	Min/Max			.,
2018_MOIEVOL		0	0/999			v

List of courses of this pass:

Code	Name of the course	Completion	Credits			
BDIP25	Diploma Thesis	Z	25			
Independent final	comprehensive work for the Master's degree study programme. A student will choose a topic from a range of topics related to his or h	ner branch of study	, which will			
be specified by branch department or branch departments. The diploma thesis will be defended in front of the board of examiners for the comprehensive final examination.						
BE4M01TAL	Theory of Algorithms	Z,ZK	6			
, °	heoretical background of the theory of algorithms with the focus at first on the time and space complexity of algorithms and problems					
of algorithms. Furt	her it is dealt with the theory of complexity; the classes P, NP, NP-complete, PSPACE and NPSPACE are treated and properties of the	em investigated. P	robabilistic			
	algorithms are studied and the classes RP and ZZP introduced.					
BE4M33PAL	Advanced Algorithms	Z,ZK	6			
	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science -	, j				
BE4M33SSU	Statistical Machine Learning	Z,ZK	6			
	cal machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some pri	-				
	al tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning conce	•				
maximum likelihood	d estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification	on and regression a	and to show			
	how they can be learned by those concepts.		•			
BE4M35KO	Combinatorial Optimization	Z,ZK	6			
-	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term of					
	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin					
algorithms and si	ate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl scheduling in production lines, message routing, scheduling in parallel computers.	anning of numan r	esources,			
BE4M36DS2	Database systems 2	Z,ZK	6			
	Juce new trends in database systems to students. We will focus primarily on the current issues of Big Data and the associated proble	· ·	-			
	We will introduce a so-called basic types of NoSQL databases and also the related issue of cloud computing, data storage and distri		-			
proceeding of data.	data files.	butou computation	o ovor largo			
BE4M36OSW	Ontologies and Semantic Web	Z.ZK	6			
	ogies and Semantic Web" will guide students through current trends and technologies in the semantic web field. Students will learn c	, ,	-			
	g them in a suitable formal language, querying them and creating semantic web applications on their top. The second part of the course		•			
	management of ontological data and other selected topics.					
BE4M36SAN	Statistical data analysis	Z,ZK	6			
This course builds d	on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly	/ aims at multivaria	te statistical			
analysis and mode	lling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a p	ourely statistical co	unterpart to			
	machine learning and data mining courses.					
BE4M36SMU	Symbolic Machine Learning	Z,ZK	6			
This course cons	sists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its	environment, also l	known as			
reinforcement le	arning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inferer	nce. The third part	will cover			
fundamental topi	cs from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally	, the last part will p	rovide an			
	introduction to several topics from the computational learning theory, including the online and batch learning settings.					

BE4M39VIZ	Visualization	Z,ZK	6			
In this course, you will get the knowledge of theoretical background for visualization and the application of visualization in real-world examples. The visualization methods are aimed						
at exploiting bot	h the full power of computer technologies and the characteristics (and limits) of human perception. Well-chosen visualization methods	s can help to revea	I hidden			
dependencies in	he data that are not evident at the first glance. This in turn enables a more precise analysis of the data or provides a deeper insight i	nto the core of the	particular			
	problem represented by the data.					
BE4MSVP	Software or Research Project	KZ	6			
Independent work	on a problem under the guidance of an advisor. Usually but not mandatory, the problem being solved is a subproblem of approaching	diploma thesis and	I the project			
advisor is the diplor	na thesis supervisor too. Therefore, we recommend choosing the topic of the diploma thesis at the beginning of the 3rd semester and	not underestimation	ng its timely			
selection. The topic	of the project should be relevant to the major branch of the study. The software and research project course must have a clearly defin	ed output, such as	a technical			
report or a compute	r program. The output is defended, evaluated and graded. Important note: - By default, it is not possible to complete more than one sub	ject of this type A	n exception			
	by the guarantor of the major branch of the study. A possible reason for granting an exemption is that the work-project has a different					
	l example is working on a project abroad. Note: The student enrolls in the course of SVP at the department of the supervisor. If the co					
then at the depart	ment 13139 (variant A4M39SVP). The contact email in case of further questions: oi@fel.cvut.cz. More instructions for entering and e	laborating the proje	ect can be			
found on the website of the Department of Computer Graphics and Interaction http://dcgi.felk.cvut.cz/cs/study/predmetprojekt.						
BEEZM	Safety in Electrical Engineering for a master's degree	Z	0			
The course provides for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical hazard of given branch of study.						
	Students receive indispensable qualification according to the current Directive of the Dean.					

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2024-05-17, time 19:06.