Recomended pass through the study plan

Name of the pass: Specialization Medical electronics - Passage through study

Faculty/Institute/Others: Faculty of Electrical Engineering Department: Pass through the study plan: Medical electronics and bioinformatics Branch of study guranteed by the department: Welcome page Guarantor of the study branch: Program of study: Medical Electronics and Bioinformatics Type of study: Follow-up master full-time Note on the pass:

Coding of roles of courses and groups of courses:

P - compulsory courses of the program, PO - compulsory courses of the branch, Z - compulsory courses, S - compulsory elective courses, PV - compulsory elective courses, F - elective specialized courses, V - elective courses, T - physical training courses

Coding of ways of completion of courses (KZ/Z/ZK) and coding of semesters (Z/L):

KZ - graded assesment, Z - assesment, ZK - examination, L - summer semester, Z - winter semester

Number of seme	ester: 1					
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	r Completion Credits Scope		Semester	Role	
BEZM	Safety in Electrical Engineering for a master's degree Vladimír K la, Radek Havlí ek, Ivana Nová, Josef ernohous, Pavel Mlejnek Radek Havlí ek Vladimír K la (Gar.)	Z	0	2BP+2BC	z	Ρ
BAM31LET	Medical Instrumentation and Devices Jan Havlík Jan Havlík Jan Havlík (Gar.)	Z,ZK	6	2P+2L	Z	Р
B4M36SAN	Statistical Data Analysis Ji í Kléma Ji í Kléma Ji í Kléma (Gar.)	Z,ZK	6	2P+2C	Z	Р
BAM02FPT	Physics for Diagnostics and Therapy Vratislav Fabián, Jan Vrba, Ladislav Oppl Vratislav Fabián Vratislav Fabián (Gar.)	Z,ZK	6	2P+2L		PS
BAM31NPG	Neurophysiology P emysl Jiruška, Helena Pivo ková P emysl Jiruška P emysl Jiruška (Gar.)	Z,ZK	6	2P+2C	Z	PS
2018_MBIOPPV2	Povinn volitelné p edm ty BAM31ADA,B2M31AEDA, (see the list of groups below)	Min. cours. 4 Max. cours. 4	Min/Max 24/24			PV

Number of seme	ester: 2					
Code	ame of the course / Name of the group of courses in case of groups of courses the list of codes of their members) intors, authors and guarantors (gar.)		Semester	Role		
BAM31BSG	Biological signals Roman mejla Roman mejla Roman mejla (Gar.)	Z,ZK	6	2P+2L	L	Р
BAM33ZSL	Medical Imaging Systems Jan Kybic, Robert Holaj, André Sopczak, Jan Petr, André Sopczak Jan Kybic Jan Kybic (Gar.)	Z,ZK	6	2P+2C	L	Ρ
BAM17EPM	Applications of Electromagnetic Fields in Medicine Jan Vrba, Ladislav Oppl Jan Vrba Jan Vrba (Gar.)	Z,ZK	6	2P+2L	L	PS
BAM31ZAS	Analog Signal Processing Ji í Hospodka Ji í Hospodka Ji í Hospodka (Gar.)	Z,ZK	6	2P+2L	L	PS
2018_MBIOPPV2	Povinn volitelné p edm ty BAM31ADA,B2M31AEDA, (see the list of groups below)	Min. cours. 4 Max. cours. 4	Min/Max 24/24			PV

Number of semester: 3

Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role
BMPROJ6	Diploma Project Vratislav Fabián, Jan Kybic, Roman mejla, Petr Pošík Petr Pošík Roman mejla (Gar.)	Z	6	0p+6s	Z,L	Ρ
BAM38KLS	Construction of Medical Systems Jan Holub Jan Holub Jan Holub (Gar.)	Z,ZK	6	2P+2L	Z	PS
2018_MBIOPPV2	Povinn volitelné p edm ty BAM31ADA,B2M31AEDA, (see the list of groups below)	Min. cours. 4 Max. cours. 4	Min/Max 24/24			PV
2018_MBIOVOL	Volitelné odborné p edm ty	Min. cours. 0	Min/Max 0/999			V

Number of semester: 4								
Code	Name of the course / Name of the group of courses (in case of groups of courses the list of codes of their members) Tutors, authors and guarantors (gar.)	Completion	Credits	Scope	Semester	Role		
BDIP30	Diploma Thesis	Z	30	22s	L	Р		

List of groups of courses of this pass with the complete content of members of individual groups

Kód		Name of the group of group (for specification	f courses and on see here o	I codes of members of this or below the list of courses)	Com	pletion	Credits	Scope	Semester	Role
2018_MBI	OPPV2	Povi	nn volitelné	pedmty		cours. 4 . cours. 4	Min/Ma 24/24	x		PV
BAM31ADA	Adaptive s	gnal processing	B2M31AEDA	Experimental Data Analysis		BAM31AOL Applied optoelectronics in			lectronics in m	edic
BAM36BIN	Bioinforma	tics	BAM02BIO	Biosensors		B0M37FAV Physiology and modeling of h			heari	
B4M35KO	Combinato	rial Optimization	B4M33MPV	Computer Vision Methods		BAM31N	IOA N	lodeling and	analysis of bra	ain a
B4M36MBG	Molecular	Biology and Genetics	BAM33NIN	Neuroinformatics		B4M33P	AL A	dvanced alg	orithms	
B2M31DSP	Advanced	DSP methods	BE4M33SSU	Statistical Machine Learning	B4M36SMU Symbolic Machine Learning					
BAM17EMC	Introductio	n to electromagnetic	BAM33ZMO	Medical Image Processing					-	
2018_MB	IOVOL	Volite	elné odborné	p edm ty	Min.	cours. 0	Min/Ma 0/999	x		v

List of courses of this pass:

Code	Name of the course	Completion	Credits				
B0M37FAV	Physiology and modeling of hearing and vision	Z,ZK	6				
The primary aim of the course is to study the physiology of sensors and processes of perception of audio and visual information by human subjects as two central and most importa							
communication cha	annels, i.e., Human Auditory System (HAS) and Human Visual System (HVS). The course summarizes current knowledge in the field	of human vision a	and hearing				
physiology and, at	the same time, presents their description using mathematical models using the latest computational tools and procedures, including	Machine Learning	(ML), Deep				
Learning (DL) and	Artificial Intelligence (AI). Emphasis is also placed on current and prospective applications of the mentioned knowledge. The main app	lication area is the	audiovisual				
technology related	to human perception, but the direct employment of the acquired knowledge also includes the areas of multimedia technology, control	systems, automatio	on, robotics,				
safety and securit	y technology, bioinspired systems, etc. At the same time, students gain a general overview of information processing in biological system	stems. A separate	part is the				
objectification of a	udiovisual information perceived quality, i.e., Quality of Experience (QoE). The course is intended for students of master's degree in t	echnical fields. The	e exercises				
will be devoted to	fundamental experiments to determine the most important characteristics of HAS and HVS, including computational models and sim	ulation of vision ar	nd hearing				
	processes.						
B2M31AEDA	Experimental Data Analysis	Z,ZK	6				
In the course of subject "Experimental Data Analysis", students will acquire knowledge regarding fundamental methods for data analysis and machine learning for evaluation and							
interpretation of data. In the course of practical lectures, students will solve individual tasks using real data from signal processing in neuroscience research. In the course of semestral							
project, student will solve complex task and present obtained results. The aim of the subject is to introduce practical application of fundamental statistical methods as well as to teach							
students to use critical thinking and to acquire additional knowledge in solution of practical tasks.							

B2M31DSP	Advanced DSP methods	Z,ZK	6
	the basic course in signal processing and introduces advanced methods of analysis and digital signal processing. Graduates will learn		
-	ble to practically use them. They learn to know the conditions of use of correlation, spectral and coherent analysis of random signals.	-	
methods of signal	decomposition and independent component analysis and the time-frequency transformations. Emphasis will be placed on an ability to) interpret the resul	Its of signal
	analyses.	771	0
B4M33MPV	Computer Vision Methods	Z,ZK	6 datastian
	selected computer vision problems: search for correspondences between images via interest point detection, description and matchi I segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences. Thi	e e e	
-	ogramme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field	-	
inter aniferency pr	information is available at https://prg.ai/minor.	er ar an en er	
B4M33PAL	Advanced algorithms	Z,ZK	6
	graph algorithms and graph representation. Combinatorial algorithms. Application of formal languages theory in computer science - r		· ·
B4M35KO	Combinatorial Optimization	Z,ZK	6
	the problems and algorithms of combinatorial optimization (often called discrete optimization; there is a strong overlap with the term c	· · ·	-
the courses on li	near algebra, graph theory, and basics of optimization, we show optimization techniques based on graphs, integer linear programmin	ig, heuristics, appro	oximation
algorithms and s	tate space search methods. We focus on application of optimization in stores, ground transportation, flight transportation, logistics, pl	anning of human re	esources,
	scheduling in production lines, message routing, scheduling in parallel computers.		
B4M36MBG	Molecular Biology and Genetics	Z,ZK	6
B4M36SAN	Statistical Data Analysis	Z,ZK	6
This course builds	on the skills developed in introductory statistics courses. It is practically oriented and gives an introduction to applied statistics. It mainly	aims at multivariat	te statistical
analysis and mode	lling, i.e., the methods that help to understand, interpret, visualize and model potentially high-dimensional data. It can be seen as a p	urely statistical cou	unterpart to
	machine learning and data mining courses.		
B4M36SMU	Symbolic Machine Learning	Z,ZK	6
	sists of four parts. The first part of the course will explain methods through which an intelligent agent can learn by interacting with its		
	arning. This will include deep reinforcement learning. The second part focuses on Bayesian networks, specifically methods for inferer	-	
fundamental topi	ics from natural language learning, starting from the basics and ending with state-of-the-art architectures such as transformer. Finally introduction to several topics from the computational learning theory, including the online and batch learning settings.	, the last part will p	rovide an
DAMOODIO		774	6
BAM02BIO	Biosensors	Z,ZK	6
BAM02FPT	Physics for Diagnostics and Therapy	Z,ZK	6
	ents will be introduced to the problems of locomotive organs diseases and musculoskeletal pain in the first seven lectures. Great space i		-
	eutic ultrasound and phototherapy. Furthermore, advanced neurorehabilitation methods, especially transcranial brain stimulation met on of the brain - rTMS, transcranial electrical stimulation of the brain - tDCS and electroconvulsive therapy - ECT) are discussed. In th		
	tion is paid to the possibilities of using ionizing electromagnetic fields in medical diagnostics and therapy (eg X-ray, proton therapy, ra		c semester,
BAM17EMC	Introduction to electromagnetic compatibility	Z,ZK	6
	Is on problems of electromagnetic compatibility. Students obtain the basic knowledges in the field of electromagnetic compatibility - e	· · ·	-
,	susceptibility and testing methods. The subject leads to gain professional skills in the field of electrical engineering.	0	,
BAM17EPM	Applications of Electromagnetic Fields in Medicine	Z,ZK	6
The major aim of th	ese lectures is to give to students a basic overview of biophysical aspects of EM fields in different biological systems, including an over	view of microwave a	applications
in medicine. Safety	y limits, clinical usage of EM field effects on biological systems, microwave hyperthermia, measurement of dielectric parameters of bio	ological tissues, EN	A exposure
	of mobile phone users, magnetic resonance imaging, interaction of optical radiation with biological tissue.		
BAM31ADA	Adaptive signal processing	Z,ZK	6
	This course provides a basic discourse on adaptive algorithms for filtering, decorrelation, separation and beamforming.		
BAM31AOL	Applied optoelectronics in medicine	Z,ZK	6
BAM31BSG	Biological signals	Z,ZK	6
BAM31LET	Medical Instrumentation and Devices	Z,ZK	6
Students will study	, fundamental principles applied within the modern medical devices and systems, esp. from the point of view of functional blocks and el	ectronic circuits of a	diagnostical
and therapeutica	al medical equipments including electrocardiographs, electroencephalographs, bedside and central monitors, equipments for anestes	iology, intensive an	nd critical
	ments for clinical laboratory, electrostimulators, cardiostimulators and defibrilators, blood pressure and flow measurement (including		oxymetry.
BAM31MOA	Modeling and analysis of brain activity	Z,ZK	6
BAM31NPG	Neurophysiology	Z,ZK	6
BAM31ZAS	Analog Signal Processing	Z,ZK	6
The course deals w	ith analog input-output blocks for signal transmission and processing. They discussed circuit solution of amplifiers and filters, including t	heir design process	s, simulation
	nt. Students learn the circuit concepts and possibilities for solving the contemporary analogue structures. The second part of the cour		-
	ation of analog filters, including discrete-time circuits. The conclusion is devoted to the possibilities of computer optimization of electro		
BAM33NIN	Neuroinformatics	Z,ZK	6
The Neuroinformat	ics Course concentrates on modelling of neurons, stochastic learning on cellular level, information coding and decoding in brain and sir		g. Examples
5444007440	from clinical practices are provided throughout the course. The labs focus on signal neuron analysis from human and animal b		
BAM33ZMO	Medical Image Processing	Z,ZK	6
This course cover	s the most used advanced image analysis methods, with emphasis on images from medical and biological modalities, from microsco	py, to ultrasound, N	ARI, or CI,
DAMOOZOL	including time sequences.	771	<u> </u>
BAM33ZSL	Medical Imaging Systems the principles, design and properties of currently used medical imaging devices. We shall deal with 2D microscopic, X-ray and ultrasou	Z,ZK	6
	the principles, design and properties of currently used medical imaging devices. We shall deal with 2D microscopic, X-ray and ultrasou Ich as Doppler ultrasound. We will also study tomographic (3D) imaging systems: computed tomography (CT), magnetic resonance ima		-
o		aa () molodin	
BAM36BIN	MRT (IMRT) and nuclear imaging methods (PET.SPECT). For more information see https://cwiei.cvui.cz/wiki/courses/si		
	MRI (fMRI) and nuclear imaging methods (PET,SPECT). For more information see https://cw.fel.cvut.cz/wiki/courses/zsl Bioinformatics	7 7K	6
	Bioinformatics	Z,ZK	6
BAM38KLS	Bioinformatics Construction of Medical Systems	Z,ZK	6
BAM38KLS BDIP30	Bioinformatics Construction of Medical Systems Diploma Thesis	Z,ZK Z	6 30
BAM38KLS BDIP30 Independent final	Bioinformatics Construction of Medical Systems	Z,ZK Z ner branch of study	6 30 , which will

BE4M33SSU	Statistical Machine Learning	Z,ZK	6				
The aim of statistic	The aim of statistical machine learning is to develop systems (models and algorithms) for learning to solve tasks given a set of examples and some prior knowledge about the task.						
This includes typical tasks in speech and image recognition. The course has the following two main objectives 1. to present fundamental learning concepts such as risk minimisation,							
maximum likelihood estimation and Bayesian learning including their theoretical aspects, 2. to consider important state-of-the-art models for classification and regression and to show							
	how they can be learned by those concepts.						
BEZM	Safety in Electrical Engineering for a master's degree	Z	0				
The course provides for students of all programs periodic training guidelines for health and occupational safety and gives knowledge of electrical hazard of given branch of study.							
Students receive indispensable qualification according to the current Directive of the Dean.							
BMPROJ6	Diploma Project	Z	6				

For updated information see <u>http://bilakniha.cvut.cz/en/f3.html</u> Generated: day 2024-05-17, time 09:22.